Arduino

I | ==

Buy | Download | Getting Started | Learning | Reference | Hardware | FAQ

Blog » | Forum » | Playground »

Learning Examples | Foundations | Hacking | Links

Examples

See the foundations page for in-depth description of core concepts of the Arduino hardware and software; the hacking
page for information on extending and modifying the Arduino hardware and software; and the links page for other

documentation.

Examples

Simple programs that demonstrate the use of the Arduino
board. These are included with the Arduino environment; to
open them, click the Open button on the toolbar and look in
the examples folder. (If you're looking for an older
example, check the Arduino 0007 tutorials page.)

Digital 170

e Blink: turn an LED on and off.

« Blink Without Delay: blinking an LED without using
the delay() function.

« Button: use a pushbutton to control an LED.

« Debounce: read a pushbutton, filtering noise.

e Loop: controlling multiple LEDs with a loop and an
array.

Analog 1/0

» Analog Input: use a potentiometer to control the
blinking of an LED.

» Fading: uses an analog output (PWM pin) to fade an
LED.

« Knock: detect knocks with a piezo element.

» Smoothing: smooth multiple readings of an analog
input.

Communication

These examples include code that allows the Arduino to talk
to Processing sketches running on the computer. For more
information or to download Processing, see processing.org.

« ASCII Table: demonstrates Arduino's advanced serial
output functions.

« Dimmer: move the mouse to change the brightness
of an LED.

» Graph: sending data to the computer and graphing it
in Processing.

« Physical Pixel: turning on and off an LED by sending
data from Processing.

« Virtual Color Mixer: sending multiple variables from
Arduino to the computer and reading them in
Processing.

EEPROM Library

Other Examples

These are more complex examples for using particular
electronic components or accomplishing specific tasks. The
code is included on the page.

Miscellaneous

« TwoSwitchesOnePin: Read two switches with one 1/0
pin

« Read a Tilt Sensor

« Controlling an LED circle with a joystick

« 3 LED color mixer with 3 potentiometers

Timing & Millis
+ Stopwatch
Complex Sensors

« Read an ADXL3xx accelerometer

« Read an Accelerometer

« Read an Ultrasonic Range Finder (ultrasound sensor)
« Reading the gprox qt401 linear touch sensor

Sound

« Play Melodies with a Piezo Speaker
« Play Tones from the Serial Connection
« MIDI Output (from ITP physcomp labs) and from

Spooky Arduino

Interfacing w/ Hardware

e Multiply the Amount of Outputs with an LED Driver
« Interfacing an LCD display with 8 bits
o LCD interface library
« Driving a DC Motor with an L293 (from ITP
physcomp labs).
« Driving a Unipolar Stepper Motor
« Build your own DMX Master device
+« Implement a software serial connection
o RS-232 computer interface
« Interface with a serial EEPROM using SPI
« Control a digital potentiometer using SPI
« Multiple digital outs with a 595 Shift Register
» X10 output control devices over AC powerlines using
X10

http://www.arduino.cc/
http://www.arduino.cc/en/Main/Buy
http://www.arduino.cc/en/Main/Software
http://www.arduino.cc/en/Guide/HomePage
http://www.arduino.cc/en/Reference/HomePage
http://www.arduino.cc/en/Main/Hardware
http://www.arduino.cc/en/Main/FAQ
http://www.arduino.cc/blog/
http://www.arduino.cc/cgi-bin/yabb2/YaBB.pl
http://www.arduino.cc/playground/
http://www.arduino.cc/en/Hacking/HomePage
http://www.arduino.cc/en/Hacking/HomePage
http://www.arduino.cc/en/Hacking/HomePage
http://processing.org/
http://www.arduino.cc/en/Tutotial/KeyboardSerial
http://itp.nyu.edu/physcomp/Labs/MIDIOutput
http://itp.nyu.edu/physcomp/Labs/Labs
http://todbot.com/blog/2006/10/29/spooky-arduino-projects-4-and-musical-arduino/
http://todbot.com/blog/2006/10/29/spooky-arduino-projects-4-and-musical-arduino/
http://itp.nyu.edu/physcomp/Labs/DCMotorControl
http://itp.nyu.edu/physcomp/Labs/Labs
http://itp.nyu.edu/physcomp/Labs/Labs

« EEPROM Clear: clear the bytes in the EEPROM.
« EEPROM Read: read the EEPROM and send its values

to the computer.
« EEPROM Write: stores values from an analog input to

the EEPROM.

Stepper Library

e Motor Knob: control a stepper motor with a
potentiometer.

http://www.arduino.cc/en/Site/AllRecentChanges

Arduino

Buy | Download | Getting Started | Learning | Reference | H » | Playground »

Learning Examples | Foundations | Hacking | Links

Foundations

This page contains explanations of some of the elements of the Arduino hardware and software and the concepts behind
them. Page Discussion

Basics
e Sketch: The various components of a sketch and how they work.
Microcontrollers
Digital Pins: How the pins work and what it means for them to be configured as inputs or outputs.
Analog Input Pins: Details about the analog-to-digital conversion and other uses of the pins.
PWM: How the analogWrite() function simulates an analog output using pulse-width modulation.
Memory: The various types of memory available on the Arduino board.
Arduino Firmware
« Bootloader: A small program pre-loaded on the Arduino board to allow uploading sketches.
Programming Technique
» Variables: How to define and use variables.

« Port Manipulation: Manipulating ports directly for faster manipulation of multiple pins

http://www.arduino.cc/
http://www.arduino.cc/en/Main/Buy
http://www.arduino.cc/en/Main/Software
http://www.arduino.cc/en/Guide/HomePage
http://www.arduino.cc/en/Reference/HomePage
http://www.arduino.cc/en/Main/Hardware
http://www.arduino.cc/en/Main/FAQ
http://www.arduino.cc/blog/
http://www.arduino.cc/cgi-bin/yabb2/YaBB.pl
http://www.arduino.cc/playground/
http://www.arduino.cc/en/Hacking/HomePage
http://www.arduino.cc/en/Reference/PortManipulation
http://www.arduino.cc/en/Site/AllRecentChanges

Arduino

I | ==

Buy | Download | Getting Started | Learning | Reference | Hardware | FAQ

Blog » | Forum » | Playground »

Learning Examples | Foundations | Hacking | Links

Links

Arduino examples, tutorials, and documentation elsewhere on the web.

Books and Manuals

===
Making
Things Talk

Making Things Talk (by Tom Igoe): teaches you how to get
your creations to communicate with one another by forming
networks of smart devices that carry on conversations with
you and your environment.

Getting Started with

Arduino.....

by Ao B

Arduino Booklet (pdf): an illustrated guide to the philosophy
and practice of Arduino.

Community Documentation

Tutorials created by the Arduino community. Hosted on the
publicly -editable playground wiki.

Board Setup and Configuration: Information about the
components and usage of Arduino hardware.

Interfacing With Hardware: Code, circuits, and instructions
for using various electronic components with an Arduino
board.

« Output

« Input

« Interaction
- Storage

Interfacing with Software: how to get an Arduino board
talking to software running on the computer (e.g.
Processing, PD, Flash, Max/MSP).

Code Library and Tutorials: Arduino functions for performing
specific tasks and other programming tutorials.

Electronics Techniques: tutorials on soldering and other
electronics resources.

Other Examples and Tutorials

Learn electronics using Arduino: an introduction to
programming, input / output, communication, etc. using
Arduino. By ladyada.

« Lesson O: Pre-flight check...Is your Arduino and
computer ready?

e Lesson 1: The "Hello World!" of electronics, a simple
blinking light

e« Lesson 2: Sketches, variables, procedures and
hacking code
Lesson 3: Breadboards, resistors and LEDs,
schematics, and basic RGB color-mixing

« Lesson 4: The serial library and binary data - getting
chatty with Arduino and crunching numbers

e Lesson 5: Buttons & switches, digital inputs, pull-up
and pull-down resistors, if/if-else statements,
debouncing and your first contract product design.

Tom Igoe's Physical Computing Site: lots of information on
electronics, microcontrollers, sensors, actuators, books, etc.

http://www.arduino.cc/
http://www.arduino.cc/en/Main/Buy
http://www.arduino.cc/en/Main/Software
http://www.arduino.cc/en/Guide/HomePage
http://www.arduino.cc/en/Reference/HomePage
http://www.arduino.cc/en/Main/Hardware
http://www.arduino.cc/en/Main/FAQ
http://www.arduino.cc/blog/
http://www.arduino.cc/cgi-bin/yabb2/YaBB.pl
http://www.arduino.cc/playground/
http://www.arduino.cc/en/Hacking/HomePage
http://www.oreilly.com/catalog/9780596510510/
http://www.oreilly.com/catalog/9780596510510/
http://www.tinker.it/en/uploads/v3_arduino_small.pdf
http://www.tinker.it/en/uploads/v3_arduino_small.pdf
http://www.arduino.cc/playground/
http://www.arduino.cc/playground/Main/ArduinoCoreHardware
http://www.arduino.cc/playground/Main/InterfacingWithHardware
http://www.arduino.cc/playground/Main/InterfacingWithHardware#Output
http://www.arduino.cc/playground/Main/InterfacingWithHardware#Input
http://www.arduino.cc/playground/Main/InterfacingWithHardware#Interaction
http://www.arduino.cc/playground/Main/InterfacingWithHardware#Storage
http://www.arduino.cc/playground/Main/InterfacingWithHardware#Communication
http://www.arduino.cc/playground/Main/InterfacingWithSoftware
http://www.arduino.cc/playground/Main/GeneralCodeLibrary
http://www.arduino.cc/playground/Main/ElectroInfoResources
http://www.ladyada.net/learn/arduino/index.html
http://www.ladyada.net/
http://www.ladyada.net/learn/arduino/lesson0.html
http://www.ladyada.net/learn/arduino/lesson1.html
http://www.ladyada.net/learn/arduino/lesson2.html
http://www.ladyada.net/learn/arduino/lesson3.html
http://www.ladyada.net/learn/arduino/lesson4.html
http://www.ladyada.net/learn/arduino/lesson5.html
http://tigoe.net/pcomp/

Example labs from ITP

Spooky Arduino: Longer presentation-format documents
introducing Arduino from a Halloween hacking class taught
by TodBot:

« class 1 (getting started)

e class 2 (input and sensors)

« class 3 (communication, servos, and pwm)

« class 4 (piezo sound & sensors, arduino+processing,
stand-alone operation)

Bionic Arduino: another Arduino class from TodBot, this one
focusing on physical sensing and making motion.

Wiring electronics reference: circuit diagrams for connecting
a variety of basic electronic components.

Schematics to circuits: from Wiring, a guide to transforming
circuit diagrams into physical circuits.

Examples from Tom Igoe

Examples from Jeff Gray

http://itp.nyu.edu/physcomp/Labs/Labs
http://todbot.com/blog/spookyarduino/
http://todbot.com/blog/wp-content/uploads/2006/10/arduino_spooky_projects_class1.pdf
http://todbot.com/blog/wp-content/uploads/2006/10/arduino_spooky_projects_class2.pdf
http://todbot.com/blog/wp-content/uploads/2006/10/arduino_spooky_projects_class3.pdf
http://todbot.com/blog/wp-content/uploads/2006/10/arduino_spooky_projects_class4.pdf
http://todbot.com/blog/wp-content/uploads/2006/10/arduino_spooky_projects_class4.pdf
http://todbot.com/blog/bionicarduino/
http://wiring.org.co/reference/electronics/index.html
http://wiring.org.co/learning/tutorials/diagrams.html
http://www.tigoe.net/pcomp/code/archives/avr/arduino/index.shtml
http://www.grayfuse.com/blog/?p=15
http://www.arduino.cc/en/Site/AllRecentChanges

Arduino

I | ==

Buy | Download | Getting Started | Learning | Reference | Hardware | FAQ

Blog » | Forum » | Playground »

Learning Examples | Foundations | Hacking | Links

Arduino Tutorials

Here you will find a growing number of examples and tutorials for accomplishing specific tasks or interfacing to other
hardware and software with Arduino. For instructions on getting the board and environment up and running, see the Arduino

guide.

Examples
Digital Output

» Blinking LED
« Blinking an LED without using the delay()

function

« Simple Dimming 3 LEDs with Pulse-Width
Modulation (PWM)

« More complex dimming/color crossfader

« Knight Rider example

» Shooting star
- PWM all of the digital pins in a sinewave

pattern

Digital Input

» Digital Input and Output (from ITP physcomp
labs)

« Read a Pushbutton

« Using a pushbutton as a switch

* Read a Tilt Sensor

Analog Input

« Read a Potentiometer

« Interfacing a Joystick

« Controlling an LED circle with a joystick

« Read a Piezo Sensor

« 3 LED cross-fades with a potentiometer

e« 3 LED color mixer with 3 potentiometers

Complex Sensors

« Read an Accelerometer

« Read an Ultrasonic Range Finder (ultrasound
sensor)

« Reading the gprox qt401 linear touch sensor

« Use two Arduino pins as a capacitive sensor

« Play Melodies with a Piezo Speaker

« More sound ideas

« Play Tones from the Serial Connection

» MIDI Output (from ITP physcomp labs) and
from Spooky Arduino

Interfacing with Other Software

Introduction to Serial Communication (from
ITP physcomp labs)

Arduino + Flash

Arduino + Processing

Arduino + PD

Arduino + MaxMSP

Arduino + VVVV

Arduino + Director

Arduino + Ruby
Arduino + C

Tech Notes (from the forums or playground)

Software serial (serial on pins besides 0 and 1)
L297 motor driver
Hex inverter

Analog multiplexer

Power supplies
The components on the Arduino board

Arduino build process

AVRISP mkll on the Mac

Non-volatile memory (EEPROM)
Bluetooth

Zigbee

LED as light sensor (en Francais)
Arduino and the Asuro robot

Using Arduino from the command line

http://www.arduino.cc/
http://www.arduino.cc/en/Main/Buy
http://www.arduino.cc/en/Main/Software
http://www.arduino.cc/en/Guide/HomePage
http://www.arduino.cc/en/Reference/HomePage
http://www.arduino.cc/en/Main/Hardware
http://www.arduino.cc/en/Main/FAQ
http://www.arduino.cc/blog/
http://www.arduino.cc/cgi-bin/yabb2/YaBB.pl
http://www.arduino.cc/playground/
http://www.arduino.cc/en/Hacking/HomePage
http://www.arduino.cc/en/Guide/HomePage
http://www.arduino.cc/playground/Main/PWMallPins
http://www.arduino.cc/playground/Main/PWMallPins
http://itp.nyu.edu/physcomp/Labs/DigitalInOut
http://itp.nyu.edu/physcomp/Labs/Labs
http://itp.nyu.edu/physcomp/Labs/Labs
http://www.arduino.cc/cgi-bin/yabb2/YaBB.pl?num=1171076259
http://www.arduino.cc/playground/Main/Freqout
http://www.arduino.cc/en/Tutotial/KeyboardSerial
http://itp.nyu.edu/physcomp/Labs/MIDIOutput
http://itp.nyu.edu/physcomp/Labs/Labs
http://todbot.com/blog/2006/10/29/spooky-arduino-projects-4-and-musical-arduino/
http://itp.nyu.edu/physcomp/Labs/Serial
http://itp.nyu.edu/physcomp/Labs/Labs
http://www.arduino.cc/playground/Interfacing/Flash
http://www.arduino.cc/playground/Interfacing/Processing
http://www.arduino.cc/playground/Interfacing/PD
http://www.arduino.cc/playground/Interfacing/MaxMSP
http://www.arduino.cc/playground/Interfacing/VVVV
http://www.arduino.cc/playground/Interfacing/Director
http://www.arduino.cc/playground/Interfacing/Ruby
http://todbot.com/blog/2006/12/06/arduino-serial-c-code-to-talk-to-arduino/
http://www.arduino.cc/cgi-bin/yabb2/YaBB.pl
http://www.arduino.cc/playground/
http://www.arduino.cc/cgi-bin/yabb2/YaBB.pl?num=1147888882
http://www.arduino.cc/cgi-bin/yabb2/YaBB.pl?num=1138310274
http://www.arduino.cc/cgi-bin/yabb2/YaBB.pl?num=1135701338
http://www.arduino.cc/cgi-bin/yabb2/YaBB.pl?num=1138666403
http://www.arduino.cc/cgi-bin/yabb2/YaBB.pl?num=1138892708
http://www.arduino.cc/cgi-bin/yabb2/YaBB.pl?num=1139161553
http://www.arduino.cc/playground/Learning/BuildProcess
http://www.arduino.cc/playground/Code/OSXISPMKII
http://www.arduino.cc/playground/Code/EEPROM-Flash
http://www.arduino.cc/playground/Learning/Tutorial01
http://mrtof.danslchamp.org/AXIC
http://www.arduino.cc/cgi-bin/yabb2/YaBB.pl?num=1146679536
http://www.arduino.cc/playground/Learning/Asuro
http://www.arduino.cc/playground/Learning/CommandLine

Interfacing w/ Hardware

e Multiply the Amount of Outputs with an LED
Driver
« Interfacing an LCD display with 8 bits
o LCD interface library
» Driving a DC Motor with an L293 (from ITP
physcomp labs).
« Driving a Unipolar Stepper Motor
« Implement a software serial connection
o RS-232 computer interface
« Interface with a serial EEPROM using SPI
« Control a digital potentiometer using SPI
« Multiple digital outs with a 595 Shift Register
« Multiple digital inputs with a CD4021 Shift

Register

Other Arduino Examples

« Example labs from ITP
« Examples from Tom Igoe

« Examples from Jeff Gray

http://itp.nyu.edu/physcomp/Labs/DCMotorControl
http://itp.nyu.edu/physcomp/Labs/Labs
http://itp.nyu.edu/physcomp/Labs/Labs
http://itp.nyu.edu/physcomp/Labs/Labs
http://www.tigoe.net/pcomp/code/archives/avr/arduino/index.shtml
http://www.grayfuse.com/blog/?p=15
http://www.arduino.cc/en/Site/AllRecentChanges

Arduino I |

Buy | Download | Getting Started | Learning | Reference | Hardware | FAQ Blog » | Forum » | Playground »

Learning Examples | Foundations | Hacking | Links

Examples > Digital 1/0

Blink

In most programming languages, the first program you write prints "hello world" to the screen. Since an Arduino board
doesn't have a screen, we blink an LED instead.

The boards are designed to make it easy to blink an LED using digital pin 13. Some (like the Diecimila and LilyPad) have the
LED built-in to the board. On most others (like the Mini and BT), there is a 1 KB resistor on the pin, allowing you to connect
an LED directly. (To connect an LED to another digital pin, you should use an external resistor.)

LEDs have polarity, which means they will only light up if you orient the legs properly. The long leg is typically positive, and
should connect to pin 13. The short leg connects to GND; the bulb of the LED will also typically have a flat edge on this side.
If the LED doesn't light up, trying reversing the legs (you won't hurt the LED if you plug it in backwards for a short period of
time).

Circuit

Code

The example code is very simple, credits are to be found in the comments.

/* Blinking LED

* turns on and off a light emitting diode(LED) connected to a digital
* pin, in intervals of 2 seconds. Ideally we use pin 13 on the Arduino
* board because it has a resistor attached to it, needing only an LED

* Created 1 June 2005
* copyleft 2005 DojoDave <http://www.0jO.org>
* http://arduino.berlios.de

http://www.arduino.cc/
http://www.arduino.cc/en/Main/Buy
http://www.arduino.cc/en/Main/Software
http://www.arduino.cc/en/Guide/HomePage
http://www.arduino.cc/en/Reference/HomePage
http://www.arduino.cc/en/Main/Hardware
http://www.arduino.cc/en/Main/FAQ
http://www.arduino.cc/blog/
http://www.arduino.cc/cgi-bin/yabb2/YaBB.pl
http://www.arduino.cc/playground/
http://www.arduino.cc/en/Hacking/HomePage

* based on an orginal by H. Barragan for the Wiring i/o0 board

*/
int ledPin = 13;

void setup()

{
pinMode(ledPin, OUTPUT);

}

void loop(Q)

{
digitalWrite(ledPin, HIGH);
delay(1000);
digitalWrite(ledPin, LOW);
delay(1000);

¥

// LED connected to digital pin 13

// sets the digital pin as output

// sets the LED on
// waits for a second
// sets the LED off
// waits for a second

http://www.arduino.cc/en/Site/AllRecentChanges

Arduino

Buy | Download | Getting Started | Learning | Reference | Hardware | FAQ Blog » | Forum » | Playground »

Learning Examples | Foundations | Hacking | Links

Examples > Digital 1/0

Blink Without Delay

Sometimes you need to blink an LED (or some other time sensitive function) at the same time as something else (like
watching for a button press). That means you can't use delay(), or you'd stop everything else the program while the LED
blinked. Here's some code that demonstrates how to blink the LED without using delay(). It keeps track of the last time it
turned the LED on or off. Then, each time through loop() it checks if a sufficient interval has passed - if it has, it turns the
LED off if it was on and vice-versa.

Code

int ledPin = 13; /1 LED connected to digital pin 13

int value = LOW /'l previous value of the LED

long previousMIlis = 0; /1l will store last tinme LED was updated
long interval = 1000; /Il interval at which to blink (mlliseconds)

voi d setup()

{
pi nMbde(| edPi n, QOUTPUT) ; Il sets the digital pin as output

voi d | oop()
{

/1 here is where you'd put code that needs to be running all the tine.

/'l check to see if it's time to blink the LED, that is, is the difference
/'l between the current tine and last tinme we blinked the LED bigger than
/'l the interval at which we want to blink the LED.
if (mllis() - previousMIlis > interval) {
previousMIlis = mllis(); /'l remenber the last tine we blinked the LED

/1 if the LED is off turn it on and vice-versa.
if (value == LOW

value = HI GH;
el se

val ue Low

digital Wite(l edPin, value);

http://www.arduino.cc/
http://www.arduino.cc/en/Main/Buy
http://www.arduino.cc/en/Main/Software
http://www.arduino.cc/en/Guide/HomePage
http://www.arduino.cc/en/Reference/HomePage
http://www.arduino.cc/en/Main/Hardware
http://www.arduino.cc/en/Main/FAQ
http://www.arduino.cc/blog/
http://www.arduino.cc/cgi-bin/yabb2/YaBB.pl
http://www.arduino.cc/playground/
http://www.arduino.cc/en/Hacking/HomePage
http://www.arduino.cc/en/Site/AllRecentChanges

Arduino =

Buy | Download | Getting Started | Learning | Reference | Hardware | FAQ Blog » | Forum » | Playground »

Learning Examples | Foundations | Hacking | Links

Examples > Digital 1/0

Button

The pushbutton is a component that connects two points in a circuit when you press it. The example turns on an LED when
you press the button.

We connect three wires to the Arduino board. The first goes from one leg of the pushbutton through a pull-up resistor (here
2.2 KOhms) to the 5 volt supply. The second goes from the corresponding leg of the pushbutton to ground. The third
connects to a digital i/o pin (here pin 7) which reads the button's state.

When the pushbutton is open (unpressed) there is no connection between the two legs of the pushbutton, so the pin is
connected to 5 volts (through the pull-up resistor) and we read a HIGH. When the button is closed (pressed), it makes a
connection between its two legs, connecting the pin to ground, so that we read a LOW. (The pin is still connected to 5 volts,
but the resistor in-between them means that the pin is "closer” to ground.)

You can also wire this circuit the opposite way, with a pull-down resistor keeping the input LOW, and going HIGH when the
button is pressed. If so, the behavior of the sketch will be reversed, with the LED normally on and turning off when you press
the button.

If you disconnect the digital i/o pin from everything, the LED may blink erratically. This is because the input is "floating" -
that is, it will more-or-less randomly return either HIGH or LOW. That's why you need a pull-up or pull-down resister in the
circuit.

Circuit

Code

int ledPin = 13; // choose the pin for the LED
int inPin = 2 /'l choose the input pin (for a pushbutton)
int val = 0; /1 variable for reading the pin status

void setup() {
pi nMode(l edPin, QOUTPUT); // declare LED as output

http://www.arduino.cc/
http://www.arduino.cc/en/Main/Buy
http://www.arduino.cc/en/Main/Software
http://www.arduino.cc/en/Guide/HomePage
http://www.arduino.cc/en/Reference/HomePage
http://www.arduino.cc/en/Main/Hardware
http://www.arduino.cc/en/Main/FAQ
http://www.arduino.cc/blog/
http://www.arduino.cc/cgi-bin/yabb2/YaBB.pl
http://www.arduino.cc/playground/
http://www.arduino.cc/en/Hacking/HomePage

pi nMode(i nPi n, | NPUT); /1 declare pushbutton as input

}
voi d | oop(){
val = digitalRead(inPin); // read input value
if (val == HGH { /1 check if the input is H GH (button rel eased)
digital Wite(ledPin, LOW; // turn LED OFF
} else {
digital Wite(ledPin, HHGH); // turn LED ON
}

http://www.arduino.cc/en/Site/AllRecentChanges

Arduino =

Buy | Download | Getting Started | Learning | Reference | Hardware | FAQ Blog » | Forum » | Playground »

Learning Examples | Foundations | Hacking | Links

Examples > Digital 1/0

Debounce

This example demonstrates the use of a pushbutton as a switch: each time you press the button, the LED (or whatever) is
turned on (if it's off) or off (if on). It also debounces the input, without which pressing the button once would appear to the
code as multiple presses. Makes use of the millis() function to keep track of the time when the button is pressed.

Circuit

A push-button on pin 7 and an LED on pin 13.

Code

int inPin = 7; /1 the nunber of the input pin

int outPin = 13; /1 the nunber of the output pin

int state = H GH /1l the current state of the output pin

int reading; /1 the current reading from the input pin
int previous = LOW /1 the previous reading fromthe input pin

/'l the follow variables are long's because the tine, neasured in niliseconds,

/1 will quickly become a bigger nunber than can be stored in an int.
long tine = 0; /1 the last tine the output pin was toggled
| ong debounce = 200; /1 the debounce time, increase if the output flickers

voi d setup()

{
pi nMbde(i nPin, | NPUT);
pi nMbde(out Pi n, QOUTPUT) ;

void | oop()

http://www.arduino.cc/
http://www.arduino.cc/en/Main/Buy
http://www.arduino.cc/en/Main/Software
http://www.arduino.cc/en/Guide/HomePage
http://www.arduino.cc/en/Reference/HomePage
http://www.arduino.cc/en/Main/Hardware
http://www.arduino.cc/en/Main/FAQ
http://www.arduino.cc/blog/
http://www.arduino.cc/cgi-bin/yabb2/YaBB.pl
http://www.arduino.cc/playground/
http://www.arduino.cc/en/Hacking/HomePage

reading = digital Read(inPin);
/1 if we just
/1 and we've waited |ong enough
if (reading H GH && previous
11 invert the output
if (state == HGH

state = LOW
el se
state = H GH
/1 and renenber when the |
tinme = mllis();
}
digital Wite(outPin, state);

previous =

readi ng;

pressed the button (i.e.

the input
since the last press
LOW && millis() -

ast button press was

went

from LONto H GH),
to ignore any noise...
tine > debounce) {

http://www.arduino.cc/en/Site/AllRecentChanges

Arduino =

Buy | Download | Getting Started | Learning | Reference | Hardware | FAQ Blog » | Forum » | Playground »

Learning Examples | Foundations | Hacking | Links

Examples > Digital 1/0

Loop

We also call this example "Knight Rider" in memory to a TV-series from the 80's where the famous David Hasselhoff had an
Al machine driving his Pontiac. The car had been augmented with plenty of LEDs in all possible sizes performing flashy
effects.

Thus we decided that in order to learn more about sequential programming and good programming techniques for the 1/0
board, it would be interesting to use the Knight Rider as a metaphor.

This example makes use of 6 LEDs connected to the pins 2 - 7 on the board using 220 Ohm resistors. The first code example
will make the LEDs blink in a sequence, one by one using only digitalWrite(pinNum,HIGH/LOW) and delay(time). The
second example shows how to use a for(;;) construction to perform the very same thing, but in fewer lines. The third and
last example concentrates in the visual effect of turning the LEDs on/off in a more softer way.

Circuit

Code

int timer = 100; /1 The higher the nunber, the slower the timng.

int pins[] ={ 2, 3, 4, 5, 6, 71}; // an array of pin nunbers

int numpins = 6; /'l the nunber of pins (i.e. the length of the array)

voi d setup()
{

int i;

for (i = 0; i < numpins; i++) /Il the array elenments are nunbered fromO to numpins - 1

http://www.arduino.cc/
http://www.arduino.cc/en/Main/Buy
http://www.arduino.cc/en/Main/Software
http://www.arduino.cc/en/Guide/HomePage
http://www.arduino.cc/en/Reference/HomePage
http://www.arduino.cc/en/Main/Hardware
http://www.arduino.cc/en/Main/FAQ
http://www.arduino.cc/blog/
http://www.arduino.cc/cgi-bin/yabb2/YaBB.pl
http://www.arduino.cc/playground/
http://www.arduino.cc/en/Hacking/HomePage
http://static.flickr.com/27/61933851_3b9a25ab42_o.jpg

pi nMbde(pins[i], OUTPUT); /1 set each pin as an output

}
voi d | oop()
{
int i;
for (i = 0; i < numpins; i++) { // loop through each pin...
digital Wite(pins[i], HGH; // turning it on,
del ay(tinmer); /'l pausing,
digital Wite(pins[i], LOW; /1 and turning it off.
}
for (i = numpins - 1; i >=0; i--) {

digital Wite(pins[i], HGH;
del ay(tinmer);
digital Wite(pins[i], LOW;

http://www.arduino.cc/en/Site/AllRecentChanges

Arduino I |

Buy | Download | Getting Started | Learning | Reference | Hardware | FAQ Blog » | Forum » | Playground »

Learning Examples | Foundations | Hacking | Links

Examples > Analog 1/0

Analog Input

A potentiometer is a simple knob that provides a variable resistance, which we can read into the Arduino board as an analog
value. In this example, that value controls the rate at which an LED blinks.

We connect three wires to the Arduino board. The first goes to ground from one of the outer pins of the potentiometer. The
second goes from 5 volts to the other outer pin of the potentiometer. The third goes from analog input 2 to the middle pin of
the potentiometer.

By turning the shaft of the potentiometer, we change the amount of resistence on either side of the wiper which is connected
to the center pin of the potentiometer. This changes the relative "closeness” of that pin to 5 volts and ground, giving us a
different analog input. When the shaft is turned all the way in one direction, there are O volts going to the pin, and we read
0. When the shaft is turned all the way in the other direction, there are 5 volts going to the pin and we read 1023. In
between, analogRead() returns a number between 0 and 1023 that is proportional to the amount of voltage being applied to
the pin.

Circuit

Code

* Anal ogl nput
* by Doj oDave <http://ww.OjO0. org>

* Turns on and off a light emtting diode(LED) connected to digital
* pin 13. The anopunt of tine the LED will be on and off depends on
* the value obtained by anal ogRead(). In the easiest case we connect
* a potentionmeter to analog pin 2.

*/
int potPin = 2; /Il select the input pin for the potentioneter
int ledPin = 13; /1l select the pin for the LED

http://www.arduino.cc/
http://www.arduino.cc/en/Main/Buy
http://www.arduino.cc/en/Main/Software
http://www.arduino.cc/en/Guide/HomePage
http://www.arduino.cc/en/Reference/HomePage
http://www.arduino.cc/en/Main/Hardware
http://www.arduino.cc/en/Main/FAQ
http://www.arduino.cc/blog/
http://www.arduino.cc/cgi-bin/yabb2/YaBB.pl
http://www.arduino.cc/playground/
http://www.arduino.cc/en/Hacking/HomePage

int val = 0; /Il variable to store the value coning from the sensor

void setup() {
pi nMode(l edPin, QOUTPUT); // declare the ledPin as an OUTPUT

}

void loop() {
val = anal ogRead(pot Pin); /'l read the value from the sensor
digitalWite(ledPin, HGH; // turn the ledPin on
del ay(val); /1 stop the program for sone tine

digital Wite(ledPin, LOW; /1 turn the ledPin off
del ay(val);

/1 stop the program for sone tine

http://www.arduino.cc/en/Site/AllRecentChanges

Arduino

Buy | Download | Getting Started | Learning | Reference | Hardware | FAQ Blog » | Forum » | Playground »

Learning Examples | Foundations | Hacking | Links

Examples > Analog 1/0

Fading

Demonstrates the use of analog output (PWM) to fade an LED.
Circuit

An LED connected to digital pin 9.

Code

int value = 0; /'l variable to keep the actual value
int ledpin = 9; /'l light connected to digital pin 9

voi d setup()

{
/1 nothing for setup

voi d | oop()
{

for(value = 0 ; value <= 255; value+=5) // fade in (frommn to max)
{
anal ogWite(l edpin, value); /] sets the value (range from 0 to 255)
del ay(30); /1l waits for 30 mlli seconds to see the dinmmng effect

}

for(value = 255; value >=0; val ue- =5) /1 fade out (from max to mn)

{
anal ogWite(l edpin, value);
del ay(30);

http://www.arduino.cc/
http://www.arduino.cc/en/Main/Buy
http://www.arduino.cc/en/Main/Software
http://www.arduino.cc/en/Guide/HomePage
http://www.arduino.cc/en/Reference/HomePage
http://www.arduino.cc/en/Main/Hardware
http://www.arduino.cc/en/Main/FAQ
http://www.arduino.cc/blog/
http://www.arduino.cc/cgi-bin/yabb2/YaBB.pl
http://www.arduino.cc/playground/
http://www.arduino.cc/en/Hacking/HomePage
http://www.arduino.cc/en/Site/AllRecentChanges

Arduino I |

Buy | Download | Getting Started | Learning | Reference | Hardware | FAQ Blog » | Forum » | Playground »

Learning Examples | Foundations | Hacking | Links

Examples > Analog 1/0

Knock

Here we use a Piezo element to detect sound, what will allow us to use it as a knock sensor. We are taking advantage of the
processors capability to read analog signals through its ADC - analog to digital converter. These converters read a voltage
value and transform it into a value encoded digitally. In the case of the Arduino boards, we transform the voltage into a value
in the range 0..1024. O represents Ovolts, while 1024 represents 5volts at the input of one of the six analog pins.

A Piezo is nothing but an electronic device that can both be used to play tones and to detect tones. In our example we are
plugging the Piezo on the analog input pin number 0, that supports the functionality of reading a value between 0 and 5volts,
and not just a plain HIGH or LOW.

The other thing to remember is that Piezos have polarity, commercial devices are usually having a red and a black wires
indicating how to plug it to the board. We connect the black one to ground and the red one to the input. We also have to
connect a resistor in the range of the Megaohms in parallel to the Piezo element; in the example we have plugged it directly
in the female connectors. Sometimes it is possible to acquire Piezo elements without a plastic housing, then they will just look
like a metallic disc and are easier to use as input sensors.

The code example will capture the knock and if it is stronger than a certain threshold, it will send the string "Knock!" back to
the computer over the serial port. In order to see this text you can use the Arduino serial monitor.

Example of connection of a Piezo to analog pin O with a resistor

/* Knock Sensor
* by DojoDave <http://ww.OjO0. org>

*

* Program using a Piezo elenent as if it was a knock sensor.

*

http://www.arduino.cc/
http://www.arduino.cc/en/Main/Buy
http://www.arduino.cc/en/Main/Software
http://www.arduino.cc/en/Guide/HomePage
http://www.arduino.cc/en/Reference/HomePage
http://www.arduino.cc/en/Main/Hardware
http://www.arduino.cc/en/Main/FAQ
http://www.arduino.cc/blog/
http://www.arduino.cc/cgi-bin/yabb2/YaBB.pl
http://www.arduino.cc/playground/
http://www.arduino.cc/en/Hacking/HomePage
http://static.flickr.com/28/53535494_73f63436cb_o.jpg

* W have to basically listen to an analog pin and detect
* if the signal goes over a certain threshold. It wites

* "knock" to the serial port if the Threshold is crossed,
* and toggles the LED on pin 13.

* http://ww. ardui no.cc/en/ Tutorial / Knock

*/

int ledPin = 13; /1 1ed connected to control pin 13

int knockSensor = 0; // the knock sensor will be plugged at analog pin O
byte val = 0; /'l variable to store the value read from the sensor pin

int statePin = LOW /| variable used to store the last LED status, to toggle the light
int THRESHOLD = 100; // threshold value to decide when the detected sound is a knock or not

void setup() {
pi nMode(| edPin, QUTPUT); // declare the ledPin as as OUTPUT

Seri al . begi n(9600) ; /'l use the serial port
}
void loop() {
val = anal ogRead(knockSensor); /'l read the sensor and store it in the variable "val"
if (val >= THRESHOLD) {
statePin = !statePin; /1 toggle the status of the ledPin (this trick doesn't use tine cycles)
digital Wite(ledPin, statePin); // turn the led on or off
Serial .println("Knock!"); /'l send the string "Knock!" back to the conputer, followed by newine
del ay(10); /1 short delay to avoid overloading the serial port
}

http://www.arduino.cc/en/Site/AllRecentChanges

Arduino

Buy | Download | Getting Started | Learning | Reference | Hardware | FAQ Blog » | Forum » | Playground »

Learning Examples | Foundations | Hacking | Links

Examples > Analog 1/0

Smoothing

Reads repeatedly from an analog input, calculating a running average and printing it to the computer. Demonstrates the use

of arrays.

Circuit

Potentiometer on analog input pin O.
Code

/'l
/1
/1
11
#define NUVREADI NGS 10

Define the nunber
the nore the readings will
respond to the input.

int
int
int
int

readi ngs[NUVREADI NGS] ;
index = 0;
total = 0;
average = 0;
int inputPin = 0;
voi d setup()
{
Seri al . begi n(9600) ;
for (int i = 0; i
readings[i] = O;

< NUVREADI NGS; i ++)

voi d | oop()
{
total -= readings[index];
readi ngs[i ndex] = anal ogRead(i nputPin);
total += readings[index];
index = (index + 1);

if (index >= NUVREADI NGS)
index = 0;

average = total / NUVREADI NGS;
Serial . println(average);

of sanples to keep track of.
be snoot hed,
Using a #define rather
use this value to deternine the size of the readings array.

/1
/'l
/'l
/11

but

The higher the nunber,
the slower the output will
than a nornal variable lets

t he
t he
t he
the

readi ngs from the anal og input
index of the current reading
running total

aver age

initialize serial commnication with conputer

initialize all the readings to 0

subtract the last reading
read from the sensor

add the reading to the total
advance to the next index

if we're at the end of the array...
...wrap around to the beginning

cal cul ate the average

send it to the conputer (as ASCI| digits)

http://www.arduino.cc/
http://www.arduino.cc/en/Main/Buy
http://www.arduino.cc/en/Main/Software
http://www.arduino.cc/en/Guide/HomePage
http://www.arduino.cc/en/Reference/HomePage
http://www.arduino.cc/en/Main/Hardware
http://www.arduino.cc/en/Main/FAQ
http://www.arduino.cc/blog/
http://www.arduino.cc/cgi-bin/yabb2/YaBB.pl
http://www.arduino.cc/playground/
http://www.arduino.cc/en/Hacking/HomePage
http://www.arduino.cc/en/Site/AllRecentChanges

Arduino =

Buy | Download | Getting Started | Learning | Reference | Hardware | FAQ Blog » | Forum » | Playground »

Learning Examples | Foundations | Hacking | Links

Examples > Communication

ASCII Table

Demonstrates the advanced serial printing functions by generating a table of characters and their ASCII values in decimal,
hexadecimal, octal, and binary.

Circuit
None, but the Arduino has to be connected to the computer.
Code

/1 ASCll Table
/'l by N cholas Zanbetti <http://ww.zanbetti.conr>

void setup()

{
Seri al . begi n(9600) ;
// prints title with ending line break
Serial.println("ASCI| Table ~ Character Map");
/Il wait for the long string to be sent
del ay(100);
}
int number = 33; // first visible character '!"' is #33
voi d | oop()
{
Serial . print(nunber, BYTE); /'l prints value unaltered, first will be '!"'

Serial.print(", dec: ");
Serial . print(nunber); /1 prints value as string in decinml (base 10)
/1 Serial.print(number, DEC); // this also works

Serial.print(", hex: ");
Serial . print(nunber, HEX); /1 prints value as string in hexadecimal (base 16)

Serial.print(", oct: ");
Serial . print(nunber, OCT); /1 prints value as string in octal (base 8)

Serial.print(", bin: ");
Serial . println(nunber, BIN); /1l prints value as string in binary (base 2)
/1 also prints ending |ine break

/1 if printed last visible character '~ #126 ...
if(nunber == 126) {
/1 1oop forever
while(true) {
conti nue;

http://www.arduino.cc/
http://www.arduino.cc/en/Main/Buy
http://www.arduino.cc/en/Main/Software
http://www.arduino.cc/en/Guide/HomePage
http://www.arduino.cc/en/Reference/HomePage
http://www.arduino.cc/en/Main/Hardware
http://www.arduino.cc/en/Main/FAQ
http://www.arduino.cc/blog/
http://www.arduino.cc/cgi-bin/yabb2/YaBB.pl
http://www.arduino.cc/playground/
http://www.arduino.cc/en/Hacking/HomePage

nunber++; // to the next character

del ay(100); // allow sonme time for the Serial data to be sent

Output

ASCI | Table ~ Character Map

!, dec: 33, hex: 21, oct: 41, bin: 100001
", dec: 34, hex: 22, oct: 42, bin: 100010
#, dec: 35, hex: 23, oct: 43, bin: 100011
$, dec: 36, hex: 24, oct: 44, bin: 100100
% dec: 37, hex: 25, oct: 45, bin: 100101
& dec: 38, hex: 26, oct: 46, bin: 100110
', dec: 39, hex: 27, oct: 47, bin: 100111
(, dec: 40, hex: 28, oct: 50, bin: 101000

http://www.arduino.cc/en/Site/AllRecentChanges

Arduino =

Buy | Download | Getting Started | Learning | Reference | Hardware | FAQ Blog » | Forum » | Playground »

Learning Examples | Foundations | Hacking | Links

Examples > Communication

Dimmer

Demonstrates the sending data from the computer to the Arduino board, in this case to control the brightness of an LED. The
data is sent in individual bytes, each of which ranges from 0 to 255. Arduino reads these bytes and uses them to set the
brightness of the LED.

Circuit
An LED connected to pin 9 (with appropriate resistor).
Code

int ledPin = 9;

void setup()
{

/1 begin the serial conmunication
Seri al . begi n(9600) ;
pi nMbde(| edPi n, QOUTPUT) ;

voi d | oop()

{
byte val;

/1 check if data has been sent from the conputer
if (Serial.available()) {
/1 read the nost recent byte (which will be from O to 255)
val = Serial.read();
/'l set the brightness of the LED
anal ogWite(ledPin, val);

Processing Code

/1 Dinmrer - sends bytes over a serial port
/1 by David A Mellis

i mport processing.serial.*;
Serial port;

voi d setup()

{

size(256, 150);

println("Available serial ports:");
printin(Serial.list());

/1 Uses the first port in this list (nunber 0). Change this to

http://www.arduino.cc/
http://www.arduino.cc/en/Main/Buy
http://www.arduino.cc/en/Main/Software
http://www.arduino.cc/en/Guide/HomePage
http://www.arduino.cc/en/Reference/HomePage
http://www.arduino.cc/en/Main/Hardware
http://www.arduino.cc/en/Main/FAQ
http://www.arduino.cc/blog/
http://www.arduino.cc/cgi-bin/yabb2/YaBB.pl
http://www.arduino.cc/playground/
http://www.arduino.cc/en/Hacking/HomePage

/1 select the port corresponding to your Arduino board. The | ast
/| parameter (e.g. 9600) is the speed of the communication. It

/'l has to correspond to the value passed to Serial.begin() in your
/'l Arduino sketch.

port = new Serial(this, Serial.list()[0], 9600);

/1 1f you know the nane of the port used by the Arduino board, you
/1 can specify it directly like this.
/lport = new Serial(this, "COML", 9600);

}
void draw()
{
/1 draw a gradient from black to white
for (int i = 0; i < 256; i++) {
stroke(i);
line(i, 0, i, 150);
}

/Il wite the current X-position of the nouse to the serial port as
/1 a single byte
port.wite(nmouseX);

http://www.arduino.cc/en/Site/AllRecentChanges

Arduino =

Buy | Download | Getting Started | Learning | Reference | Hardware | FAQ Blog » | Forum » | Playground »

Learning Examples | Foundations | Hacking | Links

Examples > Communication

Graph

A simple example of communication from the Arduino board to the computer: the value of an analog input is printed. We call
this "serial" communication because the connection appears to both the Arduino and the computer as an old-fashioned serial
port, even though it may actually use a USB cable.

You can use the Arduino serial monitor to view the sent data, or it can be read by Processing (see code below), Flash, PD,
Max/MSP, etc.

Circuit

An analog input connected to analog input pin O.

Code

voi d setup()

{
Seri al . begi n(9600) ;

}

void | oop()

{
Serial . println(anal ogRead(0));
del ay(20);

}

Processing Code

/'l Graph

/1 by David A Mellis

/1

/'l Denpnstrates reading data from the Arduino board by graphing the
/'l val ues received.

/1

/'l based on Analog In

/1 by Josh N nmoy.

i nport processing.serial.*;
Serial port;

String buff ="";
int NEW.INE 10;

/1 Store the last 64 values received so we can graph them
int[] values = new int[64];

voi d setup()

{
size(512, 256);

println("Available serial ports:");
printin(Serial.list());

http://www.arduino.cc/
http://www.arduino.cc/en/Main/Buy
http://www.arduino.cc/en/Main/Software
http://www.arduino.cc/en/Guide/HomePage
http://www.arduino.cc/en/Reference/HomePage
http://www.arduino.cc/en/Main/Hardware
http://www.arduino.cc/en/Main/FAQ
http://www.arduino.cc/blog/
http://www.arduino.cc/cgi-bin/yabb2/YaBB.pl
http://www.arduino.cc/playground/
http://www.arduino.cc/en/Hacking/HomePage

/1 Uses the first port in this list (nunmber 0). Change this to
/1 select the port corresponding to your Arduino board. The | ast
/| parameter (e.g. 9600) is the speed of the communication. It

/'l has to correspond to the value passed to Serial.begin() in your
/1 Arduino sketch.

port = new Serial(this, Serial.list()[0], 9600);

/1 1f you know the nane of the port used by the Arduino board, you
/1 can specify it directly like this.
/lport = new Serial(this, "COML", 9600);

}
void draw()
{
background(53);
stroke(255);
/1l Graph the stored values by drawing a |ines between them
for (int i = 0; i < 63; i++)
line(i * 8, 255 - values[i], (i + 1) * 8, 255 - values[i + 1]);
while (port.available() > 0)
serial Event (port.read());
}

voi d serial Event(int serial)
{
if (serial !'= NEW.INE) ({
// Store all the characters on the line.
buff += char(serial);
} else {
/1l The end of each line is nmarked by two characters, a carriage
/1 return and a newWine. W're here because we've gotten a new ine,
/1 but we still need to strip off the carriage return.
buff = buff.substring(0, buff.length()-1);

/| Parse the String into an integer. W divide by 4 because
/1 analog inputs go fromO to 1023 while colors in Processing
/1 only go fromO to 255.

int val = Integer.parselnt(buff)/4;

/1 Cear the value of "buff"
buff = "";

/1 sShift over the existing values to nmake room for the new one.
for (int i = 0; i < 63; i++)
values[i] = values[i + 1];

/1 Add the received value to the array.
val ues[63] = val;

http://www.arduino.cc/en/Site/AllRecentChanges

Arduino =

Buy | Download | Getting Started | Learning | Reference | Hardware | FAQ Blog » | Forum » | Playground »

Learning Examples | Foundations | Hacking | Links

Examples > Communication

Physical Pixel

An example of using the Arduino board to receive data from the computer. In this case, the Arduino boards turns on an LED
when it receives the character 'H', and turns off the LED when it receives the character 'L'.

The data can be sent from the Arduino serial monitor, or another program like Processing (see code below), Flash (via a
serial-net proxy), PD, or Max/MSP.

Circuit
An LED on pin 13.
Code

int outputPin = 13;
int val;

void setup()
{
Seri al . begi n(9600) ;
pi nMode(out put Pi n, OUTPUT) ;

}
voi d | oop()
{
if (Serial.available()) {
val = Serial.read();
if (val == "H) {
digital Wite(outputPin, H GH;
}
if (val =="'L") {
digital Wite(outputPin, LOW;
}
}
}

Processing Code

/1 nouseover serial
/1 by BARRAGAN <http://people.interaction-ivrea.it/h.barragan>

/1 Denonstrates how to send data to the Arduino 1/0O board, in order to
/1 turn ON a light if the nobuse is over a rectangle and turn it off

/1 if the nouse is not.

/| created 13 May 2004

i nport processing.serial.*;

Serial port;

voi d setup()

http://www.arduino.cc/
http://www.arduino.cc/en/Main/Buy
http://www.arduino.cc/en/Main/Software
http://www.arduino.cc/en/Guide/HomePage
http://www.arduino.cc/en/Reference/HomePage
http://www.arduino.cc/en/Main/Hardware
http://www.arduino.cc/en/Main/FAQ
http://www.arduino.cc/blog/
http://www.arduino.cc/cgi-bin/yabb2/YaBB.pl
http://www.arduino.cc/playground/
http://www.arduino.cc/en/Hacking/HomePage

si ze(200, 200);
noStroke();
frameRat e(10);

/1 List all the available serial ports in the output pane.

/1 You will need to choose the port that the Arduino board is
/1 connected to fromthis list. The first port in the list is
/1 port #0 and the third port in the list is port #2.
printin(Serial.list());

/1 Open the port that the Arduino board is connected to (in this case #0)
/'l Make sure to open the port at the sanme speed Arduino is using (9600bps)
port = new Serial(this, Serial.list()[0], 9600);

/] function to test if nouse is over square
bool ean nopuseOver Rect ()

{
return ((nouseX >= 50)&&(nmouseX <= 150) &&(nouseY >= 50) & mouseY <= 150));
}
void draw()
{
background(#222222);
i f (nouseOver Rect ()) /1 if mouse is over square
{
fill (#BBBBBO); /'l change col or
port.wite('H); // send an 'H to indicate nbuse is over square
} else {
fill (#666660); /'l change col or
port.wite('L"); /1 send an 'L' otherw se
}

rect (50, 50, 100, 100); // draw square

http://www.arduino.cc/en/Site/AllRecentChanges

Arduino =

Buy | Download | Getting Started | Learning | Reference | Hardware | FAQ Blog » | Forum » | Playground »

Learning Examples | Foundations | Hacking | Links

Examples > Communication

Virtual Color Mixer

Demonstrates one technique for sending multiple values from the Arduino board to the computer. In this case, the readings
from three potentiometers are used to set the red, green, and blue components of the background color of a Processing
sketch.

Circuit
Potentiometers connected to analog input pins 0, 1, and 2.
Code

int redPin = 0;
int greenPin = 1;
int bluePin = 2;

voi d setup()

{
Seri al . begi n(9600) ;
}
voi d | oop()
{

Serial.print("R");

Serial . println(anal ogRead(redPin));
Serial.print("G');

Serial . println(anal ogRead(greenPin));
Serial.print("B");

Serial . println(anal ogRead(bl uePin));
del ay(100);

Processing Code

/**
* Col or M xer
* by David A Mellis

* Created 2 Decenber 2006

* based on Analog In
* by Josh N noy.

* Created 8 February 2003
* Updated 2 April 2005
*/

i mport processing.serial.*;

String buff = "";
int rval = 0, gval = 0, bval = 0;

http://www.arduino.cc/
http://www.arduino.cc/en/Main/Buy
http://www.arduino.cc/en/Main/Software
http://www.arduino.cc/en/Guide/HomePage
http://www.arduino.cc/en/Reference/HomePage
http://www.arduino.cc/en/Main/Hardware
http://www.arduino.cc/en/Main/FAQ
http://www.arduino.cc/blog/
http://www.arduino.cc/cgi-bin/yabb2/YaBB.pl
http://www.arduino.cc/playground/
http://www.arduino.cc/en/Hacking/HomePage

int NEW.INE = 10;

Serial port;

voi d setup()

{
si ze(200, 200);
/1 Print a list in case COML doesn't work out
println("Available serial ports:");
printin(Serial.list());
/lport = new Serial (this, "COML", 9600);
/1 Uses the first available port
port = new Serial (this, Serial.list()[0], 9600);
}
void draw()
{
while (port.available() > 0) {
serial Event (port.read());
}
background(rval, gval, bval);
}
void serial Event(int serial)
{
/1 1f the variable "serial" is not equal to the value for
// a new line, add the value to the variable "buff". If the
/1 value "serial" is equal to the value for a new line,
/1l save the value of the buffer into the variable "val".
if(serial !'= NEWINE) {
buff += char(serial);
} else {
/'l The first character tells us which color this value is for
char ¢ = buff.charAt(0);
/1 Renove it fromthe string
buff = buff.substring(l);
/] Discard the carriage return at the end of the buffer
buff = buff.substring(0, buff.length()-1);
/1 Parse the String into an integer
if (c =="'R)
rval = Integer.parselnt(buff);
else if (c == "'G)
gval = Integer.parselnt(buff);
else if (c == "'B")
bval = Integer.parselnt(buff);
/1 Clear the value of "buff"
buff = "";
}

http://www.arduino.cc/en/Site/AllRecentChanges

Arduino I |

Buy | Download | Getting Started | Learning | Reference | Hardware | FAQ Blog » | Forum » | Playground »

Learning Examples | Foundations | Hacking | Links

Read Two Switches With One 1/0 Pin

There are handy 20K pullup resistors (resistors connected internally between Arduino 1/0 pins and VCC - +5 volts in the
Arduino’s case) built into the Atmega chip upon which Freeduino's are based. They are accessible from software by using the
digitalwrite() function, when the pin is set to an input.

This sketch exploits the pullup resistors under software control. The idea is that an external 200K resistor to ground will
cause an input pin to report LOW when the internal (20K) pullup resistor is turned off. When the internal pullup resistor is
turned on however, it will overwhelm the external 200K resistor and the pin will report HIGH.

One downside of the scheme (there always has to be a downside doesn't there?) is that one can't tell if both buttons are
pushed at the same time. In this case the scheme just reports that sw2 is pushed. The job of the 10K series resistor,
incidentally, is to prevent a short circuit if a pesky user pushes both buttons at once. It can be omitted on a center-off slide
or toggle switch where the states are mutually exclusive.

* Read_Two_Swi t ches_On_One_Pin

* Read two pushbutton switches or one center-off toggle switch with one Arduino pin
* Paul Badger 2008

* From an idea in EDN (Electronic Design News)

* Exploits the pullup resistors available on each I/0O and analog pin

* The idea is that the 200K resistor to ground will cause the input pin to report LOW when the
* (20K) pullup resistor is turned off, but when the pullup resistor is turned on,

* it will overwhelmthe 200K resistor and the pin will report H GH

* Schenmatic Diagram (can't belive |I drew this funky ascii schenatic)

* +5 V

* |

* \

* /

* \ 10K

* /

* \

* I

* / switch 1 or 1/2 of center-off toggle or slide switch
* /

* |

* digital pin + JAYAYAY ground

* I

* | 200K to 1M (not critical)

* /

* / switch 2 or 1/2 of center-off toggle or slide swtch
* I

* |

*

* o ground

*/

http://www.arduino.cc/
http://www.arduino.cc/en/Main/Buy
http://www.arduino.cc/en/Main/Software
http://www.arduino.cc/en/Guide/HomePage
http://www.arduino.cc/en/Reference/HomePage
http://www.arduino.cc/en/Main/Hardware
http://www.arduino.cc/en/Main/FAQ
http://www.arduino.cc/blog/
http://www.arduino.cc/cgi-bin/yabb2/YaBB.pl
http://www.arduino.cc/playground/
http://www.arduino.cc/en/Hacking/HomePage

#define swPin 2 // pin for input - note: no semicolon after #define
int stateA, stateB; /'l variables to store pin states
int swl, swZ; /'l variables to represent switch states

voi d setup()

{
Seri al . begi n(9600) ;
}
voi d | oop()
{
digital Wite(swPin, LOWN; /1 make sure the puillup resistors are off
stateA = digital Read(swPin);
digital Wite(swPin, H GH; /1 turn on the puillup resistors
stateB = digital Read(swPin);
if (stateA == 1 && stateB == 1){ /1 both states HIGH - switch 1 nust be pushed
swl = 1;
sw2 = 0;
}
else if (stateA == 0 & & stateB == 0){ /1 both states LON- switch 2 nust be pushed
swl = O;
sw2 = 1,
}
el se{ /'l stateA H GH and stateB LOW
swl = O; /'l no swtches pushed - or center-off toggle in niddle
position
sw2 = 0;
}

Serial.print(swl);
Serial.print(" ") /'l pad sone spaces to format print output
Serial .println(sw2);

del ay(100);

http://www.arduino.cc/en/Site/AllRecentChanges

Arduino

Buy | Download | Getting Started | Learning | Reference | Hardware | FAQ Blog » | Forum » | Playground »

Learning Examples | Foundations | Hacking | Links

Tilt Sensor

The tilt sensor is a component that can detect the tilting of an object. However it is only the equivalent to a pushbutton
activated through a different physical mechanism. This type of sensor is the environmental-friendly version of a mercury-
switch. It contains a metallic ball inside that will commute the two pins of the device from on to off and viceversa if the
sensor reaches a certain angle.

The code example is exactly as the one we would use for a pushbutton but substituting this one with the tilt sensor. We use
a pull-up resistor (thus use active-low to activate the pins) and connect the sensor to a digital input pin that we will read
when needed.

The prototyping board has been populated with a 1K resitor to make the pull-up and the sensor itself. We have chosen the
tilt sensor from Assemtech, which datasheet can be found here. The hardware was mounted and photographed by Anders
Gran, the software comes from the basic Arduino examples.

Circuit

aama nlilnmmnm
EE ke ml
B

I!I“ﬂllﬂﬂ R
I-IH BEBA RS e e
ﬁ"'lll" S
b b N
H-lﬂ mea .-lﬂl'l!Il o

III (A WA
i -!I=I §=

Picture of a protoboard supporting the tilt sensor, by Anders Gran
Code

Use the Digital > Button example to read the tilt-sensor, but you'll need to make sure that the inputPin variable in the code
matches the digital pin you're using on the Arduino board.

http://www.arduino.cc/
http://www.arduino.cc/en/Main/Buy
http://www.arduino.cc/en/Main/Software
http://www.arduino.cc/en/Guide/HomePage
http://www.arduino.cc/en/Reference/HomePage
http://www.arduino.cc/en/Main/Hardware
http://www.arduino.cc/en/Main/FAQ
http://www.arduino.cc/blog/
http://www.arduino.cc/cgi-bin/yabb2/YaBB.pl
http://www.arduino.cc/playground/
http://www.arduino.cc/en/Hacking/HomePage
http://www.elfa.se/pdf/35/03589330.pdf
http://www.gran.nu/
http://www.gran.nu/
http://static.flickr.com/30/65458903_d9a89442a9_b.jpg
http://www.gran.nu/
http://www.arduino.cc/en/Site/AllRecentChanges

Arduino I |

Buy | Download | Getting Started | Learning | Reference | Hardware | FAQ Blog » | Forum » | Playground »

Learning Examples | Foundations | Hacking | Links

Controlling a circle of LEDs with a Joystick

The whole circuit:

Detail of the LED wiring

http://www.arduino.cc/
http://www.arduino.cc/en/Main/Buy
http://www.arduino.cc/en/Main/Software
http://www.arduino.cc/en/Guide/HomePage
http://www.arduino.cc/en/Reference/HomePage
http://www.arduino.cc/en/Main/Hardware
http://www.arduino.cc/en/Main/FAQ
http://www.arduino.cc/blog/
http://www.arduino.cc/cgi-bin/yabb2/YaBB.pl
http://www.arduino.cc/playground/
http://www.arduino.cc/en/Hacking/HomePage

Detail of the arduino wiring

How this works

As you know from the Interfacing a Joystick tutorial, the joystick gives a coordinate (x,y) back to arduino. As you can see
looking to the joystick is that the space in which he moves is a circle. This circle will be from now on our 'Pie’ (see bottom
right of the first image).

The only thing we need now to understand is that we have divided our Pie in 8 pieces. To each piece will correspond an LED.
(See figure below). This way, when the joystick gives us a coordinate, it will necesarilly belong to one of the pies. Then, the
program always lights up the LED corresponding to the pie in which the joystick is.

|\Zowe Dagead | o

2oie e 0 slape 4
Bl A
e | @
'Ebl'ltc & > LEDs in &A&ragm
Y=o
8 L |
Zon 5 | ® Zongz
dong, X= -y
g 1y £ T
CounecTions
[-———' Sl 0B s gl Pin 2
00
e . Pin
Fn¥ e
fints 'ng

Deauonity BY (Ceomife Herrudin

Code

/* Controle_LEDcirle_wth_joystik

* This program controles a cirle of 8 LEDs through a joystick

* First it reads two analog pins that are connected
* to a joystick nmade of two potentioneters

* This input is interpreted as a coordinate (Xx,y)

* The program then calculates to which of the 8
* possi bl e zones bel ogns the coordinate (x,y)

* Finally it ligths up the LED which is placed in the
* detected zone

* @uthors: Cristina Hoffmann and Gustavo Jose Val era
* @nardware: Cristina Hof mann and GQustavo Jose Val era
* @ontext: Arduino Workshop at nedial anadrid

*/

/1 Declaration of Variables

int ledPins [] = { 2,3,4,5,6,7,8,9 }; /1 Array of 8 leds nounted in a circle
int |edVerde = 13;

int espera = 40; /1 Time you should wait for turning on the |eds
int joyPinl = O; /1 slider variable connecetd to analog pin 0O
int joyPin2 = 1; /1 slider variable connecetd to analog pin 1

int coordX = 0; // variable to read the value from the analog pin 0
int coordY = O0; /'l variable to read the value from the analog pin 1

int centerX = 500; /1 we measured the value for the center of the joystick
int centerY = 500;

int actual Zone = 0;

int previousZone = O;

/'l Asignnment of the pins
voi d setup()
{
int i;
begi nSeri al (9600) ;
pi nMode (| edVerde, OUTPUT);
for (i=0; i< 8; i++)
{
pi nMbde(| edPins[i], OUTPUT);

}

/1 function that calculates the slope of the line that passes through the points
/1 x1, yl and x2, y2
int calculateSlope(int x1, int yl, int x2, int y2)
{
return ((yl-y2) / (x1-x2));
}

/1 function that calculates in which of the 8 possible zones is the coordinate x y, given the center cx,
cy
int calculateZone (int x, int y, int cx, int cy)

{

int alpha = calculateSl ope(x,y, cx,cy); // slope of the segnent betweent the point and the center

if (x > cx)
{
if (y >cy) // first cuadrant
{
if (alpha > 1) // The slope is > 1, thus higher part of the first quadrant
return O;
el se
return 1; /Il Otherwise the point is in the lower part of the first quadrant

}

el se // second cuadrant
{
if (alpha > -1)
return 2;
el se
return 3;

}

el se
{
if (y <cy) // third cuadrant
{
if (alpha > 1)
return 4;
el se
return 5;
}
else // fourth cuadrant
{
if (alpha > -1)
return 6;
el se
return 7;

void loop() {
digital Wite(ledVerde, HGH; // flag to know we entered the |oop, you can erase this if you want

/1 reads the value of the variable resistors
coordX = anal ogRead(j oyPi nl);
coordY = anal ogRead(j oyPi n2);

/1 We calculate in which x
actual Zone = cal cul at eZone(coordX, coordY, centerX, centerY);

digital Wite (ledPins[actual Zone], H GH);

if (actual Zone != previousZone)
digital Wite (IedPins[previousZone], LOW;

/1 we print int the terminal, the cartesian value of the coordinate, and the zone where it belongs.
/1 This is not necesary for a standal one version

serial Wite('C);

serial Wite(32); // print space

printlnteger (coordX);

serial Wite(32); // print space

printlnteger(coordy);

serial Wite(10);

serial Wite(13);

serial Wite('Z');

serial Wite(32); // print space
printlnteger(actual Zone);

serial Wite(10);

serial Wite(13);

/1 But this is necesary so, don't delete it!
previ ousZone = actual Zone;
/1 delay (500);

}
@idea: Cristina Hoffmann and Gustavo Jose Valera
@code: Cristina Hoffmann and Gustavo Jose Valera

@pictures and graphics: Cristina Hoffmann

@date: 20051008 - Madrid - Spain

http://www.arduino.cc/en/Site/AllRecentChanges

Arduino I |

Buy | Download | Getting Started | Learning | Reference | Hardware | FAQ Blog » | Forum » | Playground »

Learning Examples | Foundations | Hacking | Links

*

* "Cof fee-cup" Color M xer:

* Code for mixing and reporting PW# nediated col or

* Assunmes Arduino 0004 or higher, as it uses Serial.begin()-style comunication

*

* Control 3 LEDs with 3 potentioneters

* |f the LEDs are different colors, and are directed at diffusing surface (stuck in a
* a Ping-Pong ball, or placed in a paper coffee cup with a cut-out bottom and

* a white plastic lid), the colors will mix together.

* When you mix a color you like, stop adjusting the pots.
* The mix values that create that color will be reported via serial out.

* Standard colors for light mxing are Red, Geen, and Blue, though you can m x
* with any three colors; Red + Blue + Wiite would let you m x shades of red,
* bl ue, and purple (though no yellow, orange, green, or blue-green.)

* Put 220 Chmresistors in line with pots, to prevent circuit from
* groundi ng out when the pots are at zero
*/

/'l Anal og pin settings

int aln = 0; /1 Potentioneters connected to analog pins 0, 1, and 2
int bln = 1; 11 (Connect power to 5V and ground to anal og ground)
int cln = 2;

/1 Digital pin settings
int aut = 9; /1 LEDs connected to digital pins 9, 10 and 11
int bt = 10; // (Connect cathodes to digital ground)

int cQut = 11;

/'l Val ues

int aval = 0; /1 Variables to store the input fromthe potentioneters
int bval = 0;

int cval = 0;

/'l Variables for conparing val ues between |oops
int i = 0; /1 Loop counter
int wait = (1000); /1 Delay between nobst recent pot adjustnent and out put

int checkSum
int prevCheckSum

0; // Aggregate pot val ues
0;

int sens = 3; // Sensitivity theshold, to prevent snall changes in
/1 pot values fromtriggering false reporting

/'l FLAGS

int PRINT = 1; // Set to 1 to output values

int DEBUG = 1; // Set to 1 to turn on debuggi ng out put

voi d setup()

{
pi nMbde(aQut, OUTPUT); Il sets the digital pins as output

http://www.arduino.cc/
http://www.arduino.cc/en/Main/Buy
http://www.arduino.cc/en/Main/Software
http://www.arduino.cc/en/Guide/HomePage
http://www.arduino.cc/en/Reference/HomePage
http://www.arduino.cc/en/Main/Hardware
http://www.arduino.cc/en/Main/FAQ
http://www.arduino.cc/blog/
http://www.arduino.cc/cgi-bin/yabb2/YaBB.pl
http://www.arduino.cc/playground/
http://www.arduino.cc/en/Hacking/HomePage

pi nMbde(bQut, OUTPUT);
pi nMbde(cQut, OUTPUT);

Seri al . begi n(9600) ; /1 Open serial comunication for reporting
}
void | oop()
{

i +=1; // Count I|oop

avVal = analogRead(aln) / 4; // read input pins, convert to 0-255 scale
bVal = anal ogRead(bln) / 4;

cVal = anal ogRead(cln) / 4;

anal ogWite(aCut, aval); /1 Send new val ues to LEDs

anal ogWite(bCQut, bVval);
anal ogWite(cQut, cVal);

if (i %wait == 0) /1 1f enough tine has passed...
{
checkSum = aVal +bVal +cVal ; /1 ...add up the 3 val ues.
if (abs(checkSum - prevCheckSum) > sens) /1 1f old and new val ues differ
/1 above sensitivity threshold

{
if (PRINT) // ...and if the PRINT flag is set...
{
Serial.print("A "); /1 ...then print the val ues.
Serial .print(aval);
Serial.print("\t");
Serial.print("B: ");
Serial.print(bval);
Serial.print("\t");
Serial.print("C ");
Serial.println(cVval);
PRINT = O;
}
}
el se
{
PRINT = 1; // Re-set the flag
}

prevCheckSum = checkSumy // Update the val ues

i f (DEBUG /1 1f we want debugging output as well...
{

Serial . print(checkSum;

Serial.print("<=>");

Serial . print(prevCheckSun;

Serial.print("\tPrint: ");

Serial .println(PRINT);

http://www.arduino.cc/en/Site/AllRecentChanges

Arduino =

Buy | Download | Getting Started | Learning | Reference | Hardware | FAQ Blog » | Forum » | Playground »

Learning Examples | Foundations | Hacking | Links

Stopwatch

A sketch that demonstrates how to do two (or more) things at once by using millis().

/* StopWatch

* Paul Badger 2008

* Denonstrates using millis(), pullup resistors,

* making two things happen at once, printing fractions

* Physical setup: nmonmentary switch connected to pin 4, other side connected to ground
* LED with series resistor between pin 13 and ground

*/

#define ledPin 13 /1 LED connected to digital pin 13

#define buttonPin 4 /1 button on pin 4

int value = LOW /1 previous value of the LED

int buttonState; /1 variable to store button state

int lastButtonState; /'l variable to store last button state

int blinking; /1 condition for blinking - timer is timng
long interval = 100; /1 blink interval - change to suit

long previousMIlis = 0; /1 variable to store last time LED was updated
long startTine ; /1 start tine for stop watch

long el apsedTine ; /1 elapsed tine for stop watch

int fractional; /1 variable used to store fractional part of tine

voi d setup()

{
Seri al . begi n(9600);
pi nMode(| edPi n, OUTPUT); /1 sets the digital pin as output
pi nMbde(buttonPi n, | NPUT); /'l not really necessary, pins default to INPUT anyway
digital Wite(buttonPin, H GH); /1 turn on pullup resistors. Wre button so that press shorts pin to
ground.
}
void | oop()
{
/'l check for button press
buttonState = digital Read(buttonPin); /1 read the button state and store
if (buttonState == LOW && | astButtonState == H GH && blinking == false){ /'l check for a high to

low transition
/1 if true then found a new button press while clock is not running - start the clock

startTime = mllis(); /] store the start tinme
blinking = true; /1 turn on blinking while tinming

http://www.arduino.cc/
http://www.arduino.cc/en/Main/Buy
http://www.arduino.cc/en/Main/Software
http://www.arduino.cc/en/Guide/HomePage
http://www.arduino.cc/en/Reference/HomePage
http://www.arduino.cc/en/Main/Hardware
http://www.arduino.cc/en/Main/FAQ
http://www.arduino.cc/blog/
http://www.arduino.cc/cgi-bin/yabb2/YaBB.pl
http://www.arduino.cc/playground/
http://www.arduino.cc/en/Hacking/HomePage

del ay(5); /1 short delay to debounce sw tch
| astButtonState = buttonState; /] store buttonState in lastButtonState, to
conpare next tinme

else if (buttonState == LOW && lastButtonState == H GH && blinking == true){ /1 check for a high to
low transition
/1 if true then found a new button press while clock is running - stop the clock and report

el apsedTinme = mllis() - startTing; /1 store elapsed tine
blinking = false; /1 turn off blinking, all done tining
| ast ButtonState = buttonState; /|l store buttonState in lastButtonState, to

conpare next tine

/1 routine to report elapsed tinme - this breaks when delays are in single or double digits. Fix
this as a coding exercise.

Serial.print((int)(elapsedTine / 1000L)); /1 divide by 1000 to convert to seconds - then
cast to an int to print
Serial.print("."); /1 print decinmal point
fractional = (int) (el apsedTine % 1000L); /1 use nodulo operator to get fractional part
of tine
Serial.println(fractional); /1 print fractional part of tinme
}
el se{
| ast ButtonState = buttonState; /1l store buttonState in |lastButtonState, to
conpare next tine
}

/1 blink routine - blink the LED while tinming

Il check to see if it's time to blink the LED, that is, is the difference
/1 between the current tine and last tine we blinked the LED bigger than
/'l the interval at which we want to blink the LED.

if ((mllis() - previousMIlis > interval)) {

if (blinking == true){
previousMIlis = millis(); /'l remenber the last tine we blinked the LED

/Il if the LED is off turn it on and vice-versa.
if (value == LOW
value = H CGH;

el se
val ue = LOW
digital Wite(ledPin, value);
}
el se{
digital Wite(ledPin, LOW; /1 turn off LED when not blinking
}

http://www.arduino.cc/en/Site/AllRecentChanges

Arduino =

Buy | Download | Getting Started | Learning | Reference | Hardware | FAQ Blog » | Forum » | Playground »

Learning Examples | Foundations | Hacking | Links

Examples > Analog 1/0

ADXL3xx Accelerometer

Reads an Analog Devices ADXL3xx series (e.g. ADXL320, ADXL321, ADXL322, ADXL330) accelerometer and communicates
the acceleration to the computer. The pins used are designed to be easily compatible with the breakout boards from
Sparkfun. The ADXL3xx outputs the acceleration on each axis as an analog voltage between 0 and 5 volts, which is read by
an analog input on the Arduino.

Circuit

An ADXL322 on a Sparkfun breakout board inserted into the analog input pins of an Arduino.

Pinout for the above configuration:

Breakout Board Pin Self-Test Z-Axis Y-Axis X-Axis Ground VDD

Arduino Analog Input Pin 0 1 2 3 4 5

Or, if you're using just the accelerometer:

ADXL3xx Pin Self-Test ZOut YOut XOut Ground VDD

Arduino Pin None (unconnected) Analog Input 1 Analog Input 2 Analog Input 3 GND 5V

Code

int groundpin = 18; /1 analog input pin 4

int powerpin = 19; /1 analog input pin 5

int xpin = 3; /1l x-axis of the accel eroneter
int ypin = 2; Il y-axis

int zpin = 1; /Il z-axis (only on 3-axis nodels)

http://www.arduino.cc/
http://www.arduino.cc/en/Main/Buy
http://www.arduino.cc/en/Main/Software
http://www.arduino.cc/en/Guide/HomePage
http://www.arduino.cc/en/Reference/HomePage
http://www.arduino.cc/en/Main/Hardware
http://www.arduino.cc/en/Main/FAQ
http://www.arduino.cc/blog/
http://www.arduino.cc/cgi-bin/yabb2/YaBB.pl
http://www.arduino.cc/playground/
http://www.arduino.cc/en/Hacking/HomePage
http://www.sparkfun.com/commerce/categories.php?c=80
http://www.sparkfun.com/commerce/categories.php?c=80

voi d setup()

{
Seri al . begi n(9600) ;

/1 Provide ground and power by using the analog inputs as nornal
/1 digital pins. This nakes it possible to directly connect the
/1 breakout board to the Arduino. If you use the nornmal 5V and
/1 G\D pins on the Arduino, you can renpve these |ines.

pi nMbde(groundPi n, OUTPUT);

pi nMbde(power Pi n, OUTPUT) ;

digital Wite(groundPin, LOW;

digital Wite(powerPin, H GH;

voi d | oop()

{
Serial . print(anal ogRead(xpin));
Serial.print(" ");
Serial . print(anal ogRead(ypin));
Serial.print(" ");
Serial . print(anal ogRead(zpin));
Serial.println();
del ay(1000);

Data

Here are some accelerometer readings collected by the positioning the y-axis of an ADXL322 2g accelerometer at various
angles from ground. Values should be the same for the other axes, but will vary based on the sensitivity of the device. With
the axis horizontal (i.e. parallel to ground or 0°), the accelerometer reading should be around 512, but values at other angles
will be different for a different accelerometer (e.g. the ADXL302 5g one).

Angle -90 -80 -70 -60 -50 -40 -30 -20 -10 O 10 20 30 40 50 60 70 80 90

Acceleration 662 660 654 642 628 610 589 563 537 510 485 455 433 408 390 374 363 357 355

http://www.arduino.cc/en/Site/AllRecentChanges

Arduino I |

Buy | Download | Getting Started | Learning | Reference | Hardware | FAQ Blog » | Forum » | Playground »

Learning Examples | Foundations | Hacking | Links

Memsic 2125 Accelerometer

The Memsic 2125 is a dual axis accelerometer sensor from Parallax able of measuring up to a 2g acceleration. When making
very accurate measurements, the sensor counts with a temperature pin that can be used to compensate possible errors.

The pins dedicated to measure acceleration can be connected directly to digital inputs to the Arduino board, while the the
temperature should be taken as an analog input. The acceleration pins send the signals back to the computer in the form of
pulses which width represents the acceleration.

The example shown here was mounted by Anders Gran, while the software was created by Marcos Yarza, who is Arduino's
accelerometer technology researcher, at the University of Zaragoza, Spain. The board is connected minimally, only the two
axis pins are plugged to the board, leaving the temperature pin open.

Fmamy EEEEE
e gtz eiel N

e S
e

4 EEEEE EREEE wEEEE Gemms EEmEE
-

GEEEE EEEEW

SRR A
SEmayE N o
admEaA®d
AW
v mE e

T o W B

I pie®

. .

L ¥ R A

I‘: sEEFRAAREEER AR EEER

i'm

o -
N EEEEE R

Protoboard with an Accelerometer, picture by Anders Gran

/* Accel eroneter Sensor

* Reads an 2- D accel eroneter

* attached to a couple of digital inputs and

* sends their values over the serial port; nmakes
* the nmonitor LED blink once sent

* http://ww.0j0.org
* copyl eft 2005 K3 - Malnp University - Sweden
* (@uthor: Marcos Yarza

http://www.arduino.cc/
http://www.arduino.cc/en/Main/Buy
http://www.arduino.cc/en/Main/Software
http://www.arduino.cc/en/Guide/HomePage
http://www.arduino.cc/en/Reference/HomePage
http://www.arduino.cc/en/Main/Hardware
http://www.arduino.cc/en/Main/FAQ
http://www.arduino.cc/blog/
http://www.arduino.cc/cgi-bin/yabb2/YaBB.pl
http://www.arduino.cc/playground/
http://www.arduino.cc/en/Hacking/HomePage
http://static.flickr.com/30/65458902_f4f2898ed9_b.jpg
http://www.gran.nu/

* @ardware: Marcos Yarza

* @roject: SMEE - Experiential Vehicles

* @ponsor: Experiments in Art and Technol ogy Sweden, 1:1 Scale
*/

int ledPin = 13;
=7
= 6;

int xaccPi
int yaccPi
int value 0;
int accel 0;
char sign ="' *';

nm n = =

int tinmer 0;

0;

int count

void setup() {

begi nSerial (9600); // Sets the baud rate to 9600
pi nMbde(| edPi n, OUTPUT) ;

pi nMbde(xaccPin, | NPUT);

pi nMbde(yaccPi n, | NPUT);

}

/* (int) Operate Acceleration

* function to calculate acceleration
* returns an integer

*/

int operateAcceleration(int tinmel) {
return abs(8 * (tinmel / 10 - 500));
}

/* (void) readAccel eroneter
* procedure to read the sensor, calculate
* accel eration and represent the val ue

*/

voi d readAccel eration(int axe){
tiner = 0;

count = O;

val ue = digital Read(axe);

while(value == HIGH) { // Loop until pin reads a |ow
value = digital Read(axe);

}

whil e(value == LOWN { // Loop until pin reads a high
val ue = digital Read(axe);

}

while(value == HGH) { // Loop until pin reads a |ow and count
val ue = digital Read(axe);

count = count + 1;

}

tinmer = count * 18; //calculate the tene in mliseconds

// operate sign
if (timer > 5000)(

sign = '+,

}

if (timer < 5000){
sign = "'-";

}

/'l determine the val ue
accel = operateAcceleration(tiner);

/| Represent accel eration over serial port
if (axe == 7){

printByte('X);

}

else {
printByte('Y');

}

printByte(sign);
printlnteger(accel);
printByte(' ');

}

void loop() {

readAccel eration(xaccPin); //reads and represents acceleration X
readAccel eration(yaccPin); //reads and represents acceleration Y
digital Wite(ledPin, H GH;

del ay(300);
digital Wite(ledPin, LOW;
}

Accelerometer mounted on prototyping board, by M. Yarza

The following example is an adaptation of the previous one. Marcos Yarza added two 2200hm resistors to the pins coming out
of the accelerometer. The board chosen for this small circuit is just a piece of prototyping board. Here the code is exactly the
same as before (changing the input pins to be 2 and 3), but the installation on the board allows to embed the whole circutry
in a much smaller housing.

http://static.flickr.com/28/65531406_d7150f954a_b.jpg
http://www.arduino.cc/en/Site/AllRecentChanges

Arduino =

Buy | Download | Getting Started | Learning | Reference | Hardware | FAQ Blog » | Forum » | Playground »

Learning Examples | Foundations | Hacking | Links

PING range finder

The PING range finder is an ultrasound sensor from Parallax able of detecting objects up to a 3 mts distance. The sensor
counts with 3 pins, two are dedicated to power and ground, while the third one is used both as input and output.

The pin dedicated to make the readings has to be shifting configuration from input to output according to the PING
specification sheet. First we have to send a pulse that will make the sensor send an ultrasound tone and wait for an echo.
Once the tone is received back, the sensor will send a pulse over the same pin as earlier. The width of that pulse will
determine the distance to the object.

The example shown here was mounted by Marcus Hannerstig, while the software was created by David Cuartielles. The board
is connected as explained using only wires coming from an old computer.

Ultrasound sensor connected to an Arduino USB v1.0

/* U trasound Sensor

*

* Reads val ues (00014-01199) from an ultrasound sensor (3m sensor)
* and wites the values to the serialport.

* http://ww. x| ab.se | http://ww.0j0.org
* copyl eft 2005 Mackie for XLAB | DojoDave for DojoCorp

*/

int ultraSoundSignal = 7; // Utrasound signal pin

http://www.arduino.cc/
http://www.arduino.cc/en/Main/Buy
http://www.arduino.cc/en/Main/Software
http://www.arduino.cc/en/Guide/HomePage
http://www.arduino.cc/en/Reference/HomePage
http://www.arduino.cc/en/Main/Hardware
http://www.arduino.cc/en/Main/FAQ
http://www.arduino.cc/blog/
http://www.arduino.cc/cgi-bin/yabb2/YaBB.pl
http://www.arduino.cc/playground/
http://www.arduino.cc/en/Hacking/HomePage
http://static.flickr.com/31/65531405_fa57b9ff66_b.jpg

int val = 0;

int ultrasoundvalue = 0;

int timecount = 0; // Echo counter

int ledPin = 13; // LED connected to digital pin 13

void setup() {

begi nSeri al (9600); /1 Sets the baud rate to 9600
pi nMbde(| edPi n, OUTPUT); /] Sets the digital pin as output
}
void loop() {
ti mecount = O;
val = 0;

pi nMode(ul traSoundSi gnal, QUTPUT); // Switch signalpin to output

/* Send | ow- high-low pulse to activate the trigger pulse of the sensor

digital Wite(ultraSoundSignal, LOW; // Send |ow pul se
del ayM croseconds(2); // Wait for 2 mcroseconds

digital Wite(ultraSoundSi gnal, HI GH); // Send high pulse
del ayM croseconds(5); // Wit for 5 mcroseconds

digital Wite(ul traSoundSi gnal, LOW; // Hol doff

/* Listening for echo pulse

pi nMode(ul traSoundSignal, INPUT); // Switch signal pin to input
val = digital Read(ul traSoundSignal); // Append signal value to val
while(val == LON { // Loop until pin reads a high value

val = digital Read(ul traSoundSi gnal);

}
while(val == HGH { // Loop until pin reads a high value

val = digital Read(ul traSoundSi gnal);

ti mecount = tinecount +1; /1 Count echo pulse tine
}

/* Witing out values to the serial port

ul trasoundVal ue = tinmecount; // Append echo pulse tine to ultrasoundVal ue

serial Wite('A'); // Exanple identifier for the sensor
printlnteger(ultrasoundVal ue);

serial Wite(10);

serial Wite(13);

/* Lite up LED if any value is passed by the echo pul se

if(timecount > 0){
digitalWite(ledPin, H GH;

/* Delay of program

del ay(100);
}

http://www.arduino.cc/en/Site/AllRecentChanges

Arduino =

Buy | Download | Getting Started | Learning | Reference | Hardware | FAQ Blog » | Forum » | Playground »

Learning Examples | Foundations | Hacking | Links

qt401 sensor

full tutorial coming soon

/* qt401 deno

* the gqt401 from gprox http://ww.gprox.comis a linear capacitive sensor
* that is able to read the position of a finger touching the sensor

* the surface of the sensor is divided in 128 positions

* the pin qt401_prx detects when a hand is near the sensor while

* t401_det determ nes when sonebody is actually touching the sensor

* these can be left unconnected if you are short of pins

* read the datasheet to understand the paranetres passed to initialise the sensor

* Created January 2006
* Massino Banzi http://ww. potenkin.org

* based on C code witten by Nicholas Zanbetti

*/

/'l define pin nmapping
int qt401_drd = 2; // data ready

int qt401_di = 3; // data in (from sensor)
int qt401_ss = 4; // slave select

int qt401_clk = 5; // clock

int qt401_do = 6; // data out (to sensor)
int qt401_det = 7; // detect

int qt401_prx = 8; // proximty

byte result;

void qt401_init() {
/1 define pin directions
pi nMbde(qt 401_drd, | NPUT);

pi nMbde(qt 401_di, | NPUT);
pi nMode(qt 401_ss, QUTPUT);
pi nMbde(qt 401_cl k, QUTPUT);

nMbde(qt 401_do, OUTPUT);
nMbde(qt 401_det, | NPUT);
nvbde(qt 401_prx, | NPUT);

oi
p
i

/1 initialise pins
digital Wite(qt401_clk, H GH);
digital Wite(qt401_ss, H GH);

11

http://www.arduino.cc/
http://www.arduino.cc/en/Main/Buy
http://www.arduino.cc/en/Main/Software
http://www.arduino.cc/en/Guide/HomePage
http://www.arduino.cc/en/Reference/HomePage
http://www.arduino.cc/en/Main/Hardware
http://www.arduino.cc/en/Main/FAQ
http://www.arduino.cc/blog/
http://www.arduino.cc/cgi-bin/yabb2/YaBB.pl
http://www.arduino.cc/playground/
http://www.arduino.cc/en/Hacking/HomePage

/1 wait for the qt401 to be ready

Il
voi d qt401_wait For Ready(voi d)
{
whil e(!digital Read(qt401_drd)){
conti nue;
}
}
/'l
/'l exchange a byte with the sensor
/1

byte qt401_transfer(byte data_out)
{
byte i = 8;

byte nmask = 0;
byte data_in = 0;

digital Wite(qt401_ss,LOW; // select slave by lowering ss pin
del ayM croseconds(75); //wait for 75 microseconds

while(0 < i) {

mask = 0x01 << --i; // generate bitmask for the appropriate bit MSB first

/1 set out byte
if(data_out & mask){ // choose bit

digital Wite(qt401l_do,H GH); // send 1

}

el se{

digital Wite(qt401_do,LOW; // send O

/1 lower clock pin, this tells the sensor to read the bit we just put out
digital Wite(qt401l_clk,LOW; // tick

/'l give the sensor tine to read the data

del ayM croseconds(75);

/1 bring clock back up

digital Wite(qt401_clk, HGH); // tock

/'l give the sensor sone time to think

del ayM croseconds(20) ;

/1 now read a bit comng from the sensor
i f(digital Read(qt401_di)){

data_in | = mask;

/1 give the sensor sone tine to think

del ayM croseconds(20);

del ayM croseconds(75); // give the sensor sone time to think
digital Wite(qt401l_ss,H GH); // do acquisition burst

return data_in;

void qt401_calibrate(void)
{

I/ calibrate

qt 401_wai t For Ready/() ;

qt 401_transfer (0x01);

del ay(600);

/1 calibrate ends

qt 401_wai t For Ready() ;
qt 401_t ransfer (0x02);
del ay(600) ;

voi d qt401_set ProxThreshol d(byte anount)
{
qt 401_wai t For Ready() ;
qt401_transfer(0x40 & (amount & Ox3F));

voi d qt401_set TouchThreshol d(byte anount)
{
qt 401_wai t For Ready() ;
qt401_transfer(0x80 & (amount & Ox3F));

byte qt401_drift Conpensate(void)
{

qt 401_wai t For Ready() ;

return qt401_transfer(0x03);

byte qt401_readSensor (void)
{

qt 401_wai t For Ready() ;
return qt401_transfer(0x00);

void setup() {

//setup the sensor
qt401_init();

qt 401_cal i brate();

qt 401_set ProxThreshol d(10);
qt 401_set TouchThr eshol d(10);

begi nSeri al (9600) ;

void loop() {

i f(digital Read(qt401_det)){
result = qt401_readSensor();
if(0x80 & result){

result = result & Ox7f;

printlnteger(result);
printNew ine();

http://www.arduino.cc/en/Site/AllRecentChanges

Arduino I |

Buy | Download | Getting Started | Learning | Reference | Hardware | FAQ Blog » | Forum » | Playground »

Learning Examples | Foundations | Hacking | Links

Play Melody

This example makes use of a Piezo Speaker in order to play melodies. We are taking advantage of the processors capability
to produde PWM signals in order to play music. There is more information about how PWM works written by David Cuartielles
here and even at K3's old course guide

A Piezo is nothing but an electronic device that can both be used to play tones and to detect tones. In our example we are
plugging the Piezo on the pin number 9, that supports the functionality of writing a PWM signal to it, and not just a plain
HIGH or LOW value.

The first example of the code will just send a square wave to the piezo, while the second one will make use of the PWM
functionality to control the volume through changing the Pulse Width.

The other thing to remember is that Piezos have polarity, commercial devices are usually having a red and a black wires
indicating how to plug it to the board. We connect the black one to ground and the red one to the output. Sometimes it is
possible to acquire Piezo elements without a plastic housing, then they will just look like a metallic disc.

Example of connection of a Piezo to pin 9

Example 1: Play Melody

/* Play Mel ody

* Program to play a sinple nelody

* Tones are created by quickly pulsing a speaker on and off
* using PWM to create signature frequencies.

http://www.arduino.cc/
http://www.arduino.cc/en/Main/Buy
http://www.arduino.cc/en/Main/Software
http://www.arduino.cc/en/Guide/HomePage
http://www.arduino.cc/en/Reference/HomePage
http://www.arduino.cc/en/Main/Hardware
http://www.arduino.cc/en/Main/FAQ
http://www.arduino.cc/blog/
http://www.arduino.cc/cgi-bin/yabb2/YaBB.pl
http://www.arduino.cc/playground/
http://www.arduino.cc/en/Hacking/HomePage
http://webzone.k3.mah.se/k3dacu/projects/ivrea/motor/pwm.html
http://proto.labbs.net/modules.php?op=modload&name=News&file=article&sid=13
http://static.flickr.com/31/53523608_3d4268ba68_o.jpg

* Each note has a frequency, created by varying the period of
* vibration, neasured in mcroseconds. W'll use pulse-wdth
* nodul ation (PW) to create that vibration.

* We calculate the pulse-width to be half the period; we pul se
* the speaker H GH for 'pulse-width" mcroseconds, then LOW
* for 'pulse-wdth' nicroseconds.

* This pulsing creates a vibration of the desired frequency.

* (cleft) 2005 D. Cuartielles for K3

* Refactoring and comments 2006 clay. shirky@uyu. edu

* See NOTES in comments at end for possible inprovements
*/

/1 TONES

/1 Start by defining the relationship between
11 note, period, & frequency.

#define ¢ 3830 /Il 261 Hz

#define d 3400 Il 294 Hz

#define e 3038 /Il 329 Hz

#define f 2864 /1 349 Hz

#define g 2550 /1 392 Hz

#define a 2272 /Il 440 Hz

#define b 2028 Il 493 Hz

#define C 1912 Il 523 Hz

/1 Define a special note, "R, to represent a rest
#define R 0

/| SETUP

/'l Set up speaker on a PWM pin (digital 9, 10 or 11)

int speakerQut = 9;

/1 Do we want debugging on serial out? 1 for yes, 0 for no
int DEBUG = 1;

void setup() {
pi nMbde(speaker Qut, QOUTPUT);
if (DEBUG ({
Seri al . begi n(9600); // Set serial out if we want debugging

/1 MELODY and TIM NG
/1 nmelody[] is an array of notes, acconpanied by beats[],

/1 which sets each note's relative length (higher #, |onger note)
int nelody[] ={ C b, g C b, e, R C ¢, g9, a C};
int beats[] = { 16, 16, 16, 8, 8, 16, 32, 16, 16, 16, 8, 8 };
int MAX_COUNT = sizeof(nelody) / 2; // Melody length, for |ooping.

/1 Set overall tenpo

long tenpo = 10000;

/1 Set length of pause between notes

int pause = 1000;

/'l Loop variable to increase Rest |ength

int rest_count = 100; //<-BLETCHEROUS HACK; See NOTES

/1 Initialize core variables
int tone = 0;

int beat = 0;

long duration = 0;

/1 PLAY TONE
/'l Pulse the speaker to play a tone for a particular duration
void playTone() {

long el apsed tinme = 0;

11

if (tone > 0) { // if this isn't a Rest beat, while the tone has
/1 played less long than 'duration', pulse speaker H GH and LOW
while (elapsed_time < duration) {

digital Wite(speakerQut, H GH);
del ayM croseconds(tone / 2);

/1 DOWN
digital Wite(speakerQut, LOW;
del ayM croseconds(tone / 2);

/1l Keep track of how long we pul sed
el apsed_time += (tone);

}
}
else { // Rest beat; loop tines delay
for (int j = 0; j < rest_count; j++) { // See NOTE on rest_count
del ayM croseconds(duration);
}
}
LET THE WLD RUMPUS BEGQ N

void loop() {

*

/1 Set up a counter to pull from nelody[] and beats[]
for (int i=0; i<MAX_COUNT; i++) {

tone = nelody[i];

beat = beats[i];

duration = beat * tenpo; // Set up timng

pl ayTone();
/1 A pause between notes...
del ayM cr oseconds(pause) ;

if (DEBUG { // If debugging, report |oop, tone, beat, and duration
Serial.print(i);
Serial.print(":");
Serial . print(beat);
Serial.print(" ");

Serial.print(tone);
Serial.print(" ");
Serial .println(duration);
}
}
NOTES

The program purports to hold a tone for 'duration' mcroseconds.

Lies lies lies! It holds for at least 'duration' mcroseconds, _plus_
any overhead created by increneting elapsed_tine (could be in excess of
3K microseconds) _plus_ overhead of looping and two digital Wites()

As a result, a tone of 'duration' plays nmuch nore slowy than a rest
of 'duration.' rest_count creates a loop variable to bring 'rest' beats
in line with "tone' beats of the sanme |ength.

rest_count will be affected by chip architecture and speed, as well as
overhead from any program nods. Past behavior is no guarantee of future
performance. Your mileage may vary. Light fuse and get away.

This could use a nunber of enhancenents:
ADD code to let the programmer specify how many tines the nelody should

* | oop before stopping

* ADD anot her octave

* MOVE tenpo, pause, and rest_count to #define statenments

* RE-VWRITE to include volunme, using analogWite, as with the second program at
* http://ww. ardui no. cc/ en/ Tut ori al / Pl ayMel ody

* ADD code to nmake the tenpo settable by pot or other input device
* ADD code to take tempo or volune settable by serial commrunication
* (Requires 0005 or higher.)

* ADD code to create a tone offset (higer or lower) through pot etc
* REPLACE random nel ody with opening bars to 'Snoke on the Wter'

*/

Second version, with volume control set using analogWrite()

/* Play Mel ody

* Program to play nelodies stored in an array, it requires to know
* about timng issues and about how to play tones.

* The calculation of the tones is made follow ng the mathenatical
* operation:

* timeH gh = 1/(2 * toneFrequency) = period / 2

* where the different tones are described as in the table:

* note frequency period PW (tineH gh)
* c 261 Hz 3830 1915

*d 294 Hz 3400 1700

* e 329 Hz 3038 1519

* f 349 Hz 2864 1432

* g 392 Hz 2550 1275

* a 440 Hz 2272 1136

* b 493 Hz 2028 1014

* C 523 Hz 1912 956

* (cleft) 2005 D. Cuartielles for K3
*/

int ledPin = 13;

int speakerQut = 9;

byte nanes[] = {'c', 'd", 'e, 'f', 'g, 'a, 'b, 'C};

int tones[] = {1915, 1700, 1519, 1432, 1275, 1136, 1014, 956};

byte melody[] = "2d2alf2c2d2a2d2c2f2d2a2c2d2alf2c2d2a2a2g2p8p8p8p";

/'l countlength:1 2 3 456789012345678901234567890
I 10 20 30

int count = O;

int count2 =

0;
int count3 = 0;
int MAX_COUNT = 24;
int statePin = LOW

void setup() {
pi nMode(| edPi n, OUTPUT);
}

void loop() {
anal ogWite(speakerQut, 0);
for (count = 0; count < MAX_COUNT; count++) {
statePin = !statePin;
digital Wite(l edPin, statePin);
for (count3 = 0; count3 <= (nelody[count*2] - 48) * 30; count3++) {

for (count2=0; count 2<8; count 2++) {

if (names[count2] == nelody[count*2 + 1]) {
anal ogW it e(speaker Qut, 500) ;
del ayM croseconds(tones[count 2]);
anal ogWit e(speakerQut, 0);
del ayM croseconds(tones[count 2]);

}

if (melody[count*2 + 1] == "'p') {
/1 make a pause of a certain size
anal ogWi t e(speakerQut, 0);
del ayM cr oseconds(500) ;

http://www.arduino.cc/en/Site/AllRecentChanges

Arduino =

Buy | Download | Getting Started | Learning | Reference | Hardware | FAQ Blog » | Forum » | Playground »

Learning Examples | Foundations | Hacking | Links

LED Driver

This example makes use of an LED Driver in order to control an almost endless amount of LEDs with only 4 pins. We use the
4794 from Philips. There is more information about this microchip that you will find in its datasheet.

An LED Driver has a shift register embedded that will take data in serial format and transfer it to parallel. It is possible to
daisy chain this chip increasing the total amount of LEDs by 8 each time.

The code example you will see here is taking a value stored in the variable dato and showing it as a decoded binary number.
E.g. if dato is 1, only the first LED will light up; if dato is 255 all the LEDs will light up.

Example of connection of a 4794

/* shift CQut Data

* Shows a byte, stored in "dato" on a set of 8 LEDs

* (copyleft) 2005 K3, Malnp University

* @uthor: David Cuartielles, Marcus Hannerstig

* @uardware: David Cuartielles, Marcos Yarza

* @roject: made for SMEE - Experiential Vehicles
*/

int data = 9;
int strob = 8;

http://www.arduino.cc/
http://www.arduino.cc/en/Main/Buy
http://www.arduino.cc/en/Main/Software
http://www.arduino.cc/en/Guide/HomePage
http://www.arduino.cc/en/Reference/HomePage
http://www.arduino.cc/en/Main/Hardware
http://www.arduino.cc/en/Main/FAQ
http://www.arduino.cc/blog/
http://www.arduino.cc/cgi-bin/yabb2/YaBB.pl
http://www.arduino.cc/playground/
http://www.arduino.cc/en/Hacking/HomePage
http://webzone.k3.mah.se/projects/arduino-workshop/upload/download.asp?file=51110204007987&enc=False&lang=english
http://static.flickr.com/30/61941877_d74eae045b_o.jpg

int clock = 10;
int oe = 11;
int count = O;
int dato = 0;

void setup()

{
begi nSeri al (9600) ;
pi nMbde(data, OUTPUT);
pi nMbde(cl ock, OUTPUT);
pi nMbde(strob, OUTPUT);
pi nMbde(oe, OUTPUT);

voi d Pul sed ock(void) {
digital Wite(clock, LOW;
del ayM croseconds(20);
digital Wite(clock, H GH);
del ayM croseconds(50) ;
digital Wite(clock, LOW;

}
voi d | oop()
{
dato = 5;
for (count = 0; count < 8; count++) {
digital Wite(data, dato & 01);
//serial Wite((dato & 01) + 48);
dat 0>>=1;
if (count == 7){
digital Wite(oe, LOW;
digital Wite(strob, H GH);
}
Pul sed ock();
digital Wite(oe, HGH;
}

del ayM croseconds(20);
digital Wite(strob, LOW;
del ay(100);

serial Wite(10);
serial Wite(13);
del ay(100); /Il waits for a nonent

}

http://www.arduino.cc/en/Site/AllRecentChanges

Arduino I |

Buy | Download | Getting Started | Learning | Reference | Hardware | FAQ Blog » | Forum » | Playground »

Learning Examples | Foundations | Hacking | Links

LCD Display - 8 bits

This example shows the most basic action to be done with a LCD display: to show a welcome message. In our case we have
an LCD display with backlight and contrast control. Therefore we will use a potentiometer to regulate the contrast.

LCD displays are most of the times driven using an industrial standard established by Hitachi. According to it there is a group
of pins dedicated to sending data and locations of that data on the screen, the user can choose to use 4 or 8 pins to send
data. On top of that three more pins are needed to synchronize the communication towards the display.

The backdrop of this example is that we are using almost all the available pins on Arduino board in order to drive the display,
but we have decided to show it this way for simplicity.

et

Picture of a protoboard supporting the display and a potentiometer

* This is the first exanple in how to use an LCD screen
* configured with data transfers over 8 bits. The exanple
* uses all the digital pins on the Arduino board, but can
* easily display data on the display

* There are the following pins to be considered:

* - D, RW DBO..DB7, Enable (11 in total)

* the pinout for LCD displays is standard and there is plenty

http://www.arduino.cc/
http://www.arduino.cc/en/Main/Buy
http://www.arduino.cc/en/Main/Software
http://www.arduino.cc/en/Guide/HomePage
http://www.arduino.cc/en/Reference/HomePage
http://www.arduino.cc/en/Main/Hardware
http://www.arduino.cc/en/Main/FAQ
http://www.arduino.cc/blog/
http://www.arduino.cc/cgi-bin/yabb2/YaBB.pl
http://www.arduino.cc/playground/
http://www.arduino.cc/en/Hacking/HomePage
http://static.flickr.com/25/53544993_3611fce234_o.jpg

* of docunentation to be found on the internet.

* (cleft) 2005 DojoDave for K3

*

*/
int DI = 12;
int RW= 11;

int DB[] = {3, 4, 5 6, 7, 8 9, 10};
int Enable = 2;

voi d LcdCommandWite(int value) {
/1 poll all the pins
int i = 0;
for (i=DB[O]; i <= DI; i++) {
digital Wite(i,value & 01);
val ue >>= 1,
}
digital Wite(Enable, LOW;
del ayM croseconds(1);
/1 send a pulse to enable
digital Wite(Enable, H GH);
del ayM croseconds(1); // pause 1 ns according to datasheet
digital Wite(Enabl e, LON;
del ayM croseconds(1); // pause 1 nms according to datasheet

void LcdDataWite(int value) {
/1 poll all the pins
int i = 0;
digitalWite(Dl, HGH;
digital Wite(RW LOW;
for (i=DB[O]; i <= DB[7]; i++) {
digital Wite(i,value & 01);
val ue >>= 1;
}
digital Wite(Enable, LOW;
del ayM croseconds(1);
/1 send a pulse to enable
digital Wite(Enable, H GH);
del ayM croseconds(1);
digital Wite(Enable, LOW;
del ayM croseconds(1); // pause 1 nms according to datasheet

void setup (void) {
int i = 0;
for (i=Enable; i <= DI; i++) {
pi nMbde(i, QUTPUT) ;
}
del ay(100);
/1 initiatize lcd after a short pause
/'l needed by the LCDs controller
LcdCommandWite(0x30); // function set:
/1 8-bit interface, 1 display lines,
del ay(64);
LcdCommandWite(0x30); // function set:
/1 8-bit interface, 1 display lines,
del ay(50);
LcdCommandWite(0x30); // function set:
/Il 8-bit interface, 1 display lines,
del ay(20);
LcdCommandWite(0x06); // entry node set:

5x7 font

5x7 font

5x7 font

/1 increment automatically, no display shift

del ay(20);

LcdCommandW i t e(OXO0E) ;

del ay(20);
LcdCommandW i t e(0x01) ;
del ay(100);
LcdCommandW i t e(0x80) ;

del ay(20);

void loop (void) {

LcdCommandW i t e(0x02) ;
del ay(10);

/1 display control:

/1 turn display on, cursor on, no blinking

/'l clear display, set cursor position to zero

/1 display control:

/1 turn display on, cursor on, no blinking

/'l set cursor position to zero

/'l Wite the wel cone nessage

LcdDataWite('H);
LcdDataWite('0");
LcdDataWite('1");
LcdDataWite('a');
LcdDataWite(' ");
LcdDataWite('C);
LcdDataWite('a');
LcdDataWite('r');
LcdDataWite('a');
LcdDataWite('c');
LcdDataWite('0");
LcdDataWite('1");
LcdDataWite('a');
del ay(500) ;

http://www.arduino.cc/en/Site/AllRecentChanges

Arduino I |

Buy | Download | Getting Started | Learning | Reference | Hardware | FAQ Blog » | Forum » | Playground »

Learning Examples | Foundations | Hacking | Links

Arduino Liquid Crystal Library LCD Interface

In this tutorial you will control a Liquid Crystal Display (LCD) using the Arduino LiquidCrystal library. The library provides
functions for accessing any LCD using the common HD44780 parallel interface chipset, such as those available from Sparkfun.
It currently implements 8-bit control and one line display of 5x7 characters. Functions are provided to initialize the screen, to
print characters and strings, to clear the screen, and to send commands directly to the HD44780 chip. This tutorial will walk
you through the steps of wiring an LCD to an Arduino microcontroller board and implementing each of these functions.

Materials needed:

« Solderless breadboard

e« Hookup wire

e Arduino Microcontoller Module

« Potentiometer

e Liquid Crystal Display (LCD) with HD44780 chip interface
« Light emitting Diode (LED) - optional, for debugging

Install the Library

For a basic explanation of how libraries work in Arduino read the library page. Download the LiquidCrystal library here. Unzip
the files and place the whole LiquidCrystal folder inside your arduino-0004\lib\targets\libraries folder. Start the Arduino
program and check to make sure LiquidCrystal is now available as an option in the Sketch menu under "Import Library".

Prepare the breadboard

Solder a header to the LCD board if one is not present already.

et
Fl-.u- B

Insert the LCD header into the breadboard and connect power and ground on the breadboard to power and ground from the
microcontroller. On the Arduino module, use the 5V and any of the ground connections.

http://www.arduino.cc/
http://www.arduino.cc/en/Main/Buy
http://www.arduino.cc/en/Main/Software
http://www.arduino.cc/en/Guide/HomePage
http://www.arduino.cc/en/Reference/HomePage
http://www.arduino.cc/en/Main/Hardware
http://www.arduino.cc/en/Main/FAQ
http://www.arduino.cc/blog/
http://www.arduino.cc/cgi-bin/yabb2/YaBB.pl
http://www.arduino.cc/playground/
http://www.arduino.cc/en/Hacking/HomePage
http://www.arduino.cc/en/Main/Libraries
http://www.arduino.cc/en/uploads/Tutorial/LiquidCrystal.zip

Connect wires from the breadboard to the arduino input sockets. It is a lot of wires, so keep them as short and tidy as
possible. Look at the datasheet for your LCD board to figure out which pins are where. Make sure to take note of whether the
pin view is from the front or back side of the LCD board, you don't want to get your pins reversed!

The pinout is as follows:

Ar dui no LCD

2 Enabl e

3 Data Bit 0 (DBO)
4 (DB1)

5 (DB2)

6 (DB3)

7 (DB4)

8 (DB5)

9 (DB6)

10 (DB7)

11 Read/ Wite (RW
12 Regi ster Select (RS)

i —m._::.,“:.":]_!';r.;:"‘}-}lr
| . .

Connect a potentiometer a a voltage divider between 5V, Ground, and the contrast adjustment pin on your LCD.

— Ladall

Additionally you may want to connect an LED for debugging purposes between pin 13 and Ground.

Program the Arduino

First start by opening a new sketch in Arduino and saving it. Now go to the Sketch menu, scroll down to "import library", and
choose "LiquidCrystal”. The phrase #include <LiquidCrystal.h> should pop up at the top of your sketch.

The first program we are going to try is simply for calibration and debugging. Copy the following code into your sketch,
compile and upload to the Arduino.

#include <LiquidCrystal.h> //include LiquidCrystal library
Li quidCrystal lcd = LiquidCrystal(); //create a LiquidCrystal object to control an LCD

voi d setup(void){
lcd.init(); //initialize the LCD
digital Wite(13,HHGH); //turn on an LED for debugging

voi d | oop(void){
del ay(1000); //repeat forever

If all went as planned both the LCD and the LED should turn on. Now you can use the potentiometer to adjust the contrast
on the LCD until you can clearly see a cursor at the beginning of the first line. If you turn the potentiometer too far in one
direction black blocks will appear. Too far in the other direction everything will fade from the display. There should be a small
spot in the middle where the cursor appears crisp and dark.

Now let's try something a little more interesting. Compile and upload the following code to the Arduino.

#i ncl ude <LiquidCrystal.h> //include LiquidCrystal library
Li qui dCrystal lcd = LiquidCrystal(); //create a LiquidCrystal object to control an LCD

voi d setup(void){
led.init(); //initialize the LCD
digital Wite(13, HGH); //turn on an LED for debugging

voi d | oop(void){
lcd.clear(); //clear the display
del ay(1000); //delay 1000 ns to view change
lcd.print('a); //send individual letters to the LCD
led.print('b");
led.print('c');
del ay(1000);//delay 1000 nms to view change

} /lrepeat forever

This time you should see the letters a b and ¢ appear and clear from the display in an endless loop.

TTT——
B R R E T

-y
.‘l. [" il

This is all great fun, but who really wants to type out each letter of a message indivually? Enter the printin() function. Simply
initialize a string, pass it to printin(), and now we have ourselves a proper hello world program.

#i ncl ude <LiquidCrystal.h> //include LiquidCrystal Ilibrary

Li quidCrystal lcd = LiquidCrystal(); //create a LiquidCrystal object to control an LCD
char stringl[] = "Hello!"; //variable to store the string "Hello!"

voi d setup(void){
led.init(); //initialize the LCD
digital Wite(13, HGH); //turn on an LED for debugging
}
voi d | oop(void){
lcd.clear(); //clear the display
del ay(1000); //delay 1000 ns to view change
lcd.printin(stringl); //send the string to the LCD
del ay(1000); //delay 1000 ns to view change
} //repeat forever

Finally, you should know there is a lot of functionality in the HD44780 chip interface that is not drawn out into Arduino
functions. If you are feeling ambitious glance over the datasheet and try out some of the direct commands using the
commandWrite() function. For example, commandWrite(2) tells the board to move the cursor back to starting position. Here
is an example:

#i ncl ude <LiquidCrystal.h> //include LiquidCrystal library

Li quidCrystal lcd = LiquidCrystal(); //create a LiquidCrystal object to control an LCD
char stringl[] = "Hello!"; //variable to store the string "Hello!"

voi d setup(void){
lcd.init(); //initialize the LCD
digital Wite(13, HHGH); //turn on an LED for debugging
}
voi d | oop(void){
I cd. commandWite(2); //bring the cursor to the starting position
del ay(1000); //delay 1000 ns to view change
lcd.printin(stringl); //send the string to the LCD
del ay(1000); //delay 1000 ns to view change
} //lrepeat forever

This code makes the cursor jump back and forth between the end of the message an the home position.

To interface an LCD directly in Arduino code see this example.

LCD interface library and tutorial by Heather Dewey-Hagborg

http://www.arduino.cc/en/Site/AllRecentChanges

Arduino I |

Buy | Download | Getting Started | Learning | Reference | Hardware | FAQ Blog » | Forum » | Playground »

Learning Examples | Foundations | Hacking | Links

Unipolar Stepper Motor

This page shows two examples on how to drive a unipolar stepper motor. These motors can be found in old floppy drives and
are easy to control. The one we use has 6 connectors of which one is power (VCC) and the other four are used to drive the
motor sending synchronous signals.

The first example is the basic code to make the motor spin in one direction. It is aiming those that have no knowledge in
how to control stepper motors. The second example is coded in a more complex way, but allows to make the motor spin at
different speeds, in both directions, and controlling both from a potentiometer.

The prototyping board has been populated with a 10K potentiomenter that we connect to an analog input, and a ULN2003A
driver. This chip has a bunch of transistors embedded in a single housing. It allows the connection of devices and
components that need much higher current than the ones that the ATMEGAS8 from our Arduino board can offer.

1

Picture of a protoboard supporting the ULN2003A and a potentiometer

Example 1: Simple example

/* Stepper Copal

* Programto drive a stepper notor coming froma 525 disk drive

* according to the docunentation | found, this stepper: "[...] notor
* made by Copal Electronics, with 1.8 degrees per step and 96 ohns
* per winding, with center taps brought out to separate leads [...]"
* [http://ww. cs. ui owa. edu/ ~j ones/ st ep/ exanpl e. ht nl]

http://www.arduino.cc/
http://www.arduino.cc/en/Main/Buy
http://www.arduino.cc/en/Main/Software
http://www.arduino.cc/en/Guide/HomePage
http://www.arduino.cc/en/Reference/HomePage
http://www.arduino.cc/en/Main/Hardware
http://www.arduino.cc/en/Main/FAQ
http://www.arduino.cc/blog/
http://www.arduino.cc/cgi-bin/yabb2/YaBB.pl
http://www.arduino.cc/playground/
http://www.arduino.cc/en/Hacking/HomePage
http://static.flickr.com/32/54357295_756c131217_o.jpg

* 1t is a unipolar stepper notor with 5 wires:

* - red: power connector, | have it at 5V and works fine
* - orange and black: coil 1
* - brown and yellow coil 2

* (cleft) 2005 DojoDave for K3
* http://www. 0j0.org | http://arduino.berlios.de

* @uthor: David Cuartielles
* @late: 20 Qct. 2005

*/

int notorPinl = 8;
int notorPin2 = 9;
int notorPin3 = 10;
int motorPind = 11;
int delayTinme = 500;

void setup() {
pi nMbde(not or Pi n1, QOUTPUT) ;
pi nMode(not or Pi n2, QOUTPUT) ;
pi nMode(not or Pi n3, QUTPUT) ;
pi nMode(not or Pi n4, QOUTPUT) ;

void loop() {

digital Wite(mtorPinl, H GH;
digital Wite(nmotorPin2, LOW;
digital Wite(notorPin3, LOW;
digital Wite(notorPin4, LOW;
del ay(del ayTi ne) ;

digital Wite(notorPinl, LOW;
digital Wite(motorPin2, H GH;
digital Wite(nmotorPin3, LOW;
digital Wite(nmotorPin4, LOW;
del ay(del ayTi ne) ;

digital Wite(notorPinl, LOW;
digital Wite(notorPin2, LOW;
digital Wite(notorPin3, H GH;
digital Wite(notorPin4, LOW;
del ay(del ayTi ne) ;

digital Wite(mtorPinl, LOW;
digital Wite(nmotorPin2, LOW;
digital Wite(nmotorPin3, LOW;
digital Wite(notorPind4, H GH;
del ay(del ayTi ne) ;

Example 2: Stepper Unipolar Advanced

/* Stepper Unipolar Advanced

* Program to drive a stepper mptor coming froma 525 disk drive

* according to the docunentation | found, this stepper: "[...] notor
* made by Copal Electronics, with 1.8 degrees per step and 96 ohns
* per winding, with center taps brought out to separate leads [...]
* [http://ww. cs. ui owa. edu/ ~j ones/ st ep/ exanpl e. ht nl]

* 1t is a unipolar stepper notor with 5 wires:

* - red: power connector, | have it at 5V and works fine
* - orange and black: coil 1
* - brown and yellow coil 2

* (cleft) 2005 DojoDave for K3
* http://ww. 0j 0.org | http://arduino. berlios.de

* @uthor: David Cuartielles
* @ate: 20 Cct. 2005
*/

int notorPins[] = {8, 9, 10, 11};
int count = O;

int count2 = 0;

int delayTinme = 500;

int val = 0;

void setup() {
for (count = 0; count < 4; count++) {
pi nMbde(ot or Pi ns[count], OUTPUT);

}
}
void nmoveForward() {
if ((count2 == 0) || (count2 == 1)) {
count2 = 16;
}
count 2>>=1;
for (count = 3; count >= 0; count--) {
digital Wite(notorPins[count], count2>>count &x01);
}
del ay(del ayTi ne) ;
}
voi d noveBackward() {
if ((count2 == 0) || (count2 == 1)) {
count2 = 16;
}
count 2>>=1;
for (count = 3; count >= 0; count--) {
digital Wite(nmotorPins[3 - count], count2>>count&0x01);
}
del ay(del ayTi ne) ;

void loop() {

val = anal ogRead(0);

if (val > 540) {
/1 nove faster the higher the value from the potentioneter
del ayTinme = 2048 - 1024 * val / 512 + 1;
noveForwar d() ;

} else if (val < 480) {
/'l nmove faster the lower the value from the potentioneter
del ayTine = 1024 * val / 512 + 1;
noveBackwar d() ;

} else {
del ayTine = 1024;

References

In order to work out this example, we have been looking into quite a lot of documentation. The following links may be useful
for you to visit in order to understand the theory underlying behind stepper motors:

- information about the motor we are using - here

- basic explanation about steppers - here

- good PDF with basic information - here

http://www.cs.uiowa.edu/~jones/step/example.html
http://www.solarbotics.net/library/pieces/parts_mech_steppers.html
http://library.solarbotics.net/pdflib/pdf/motorbas.pdf
http://www.arduino.cc/en/Site/AllRecentChanges

Arduino

Buy | Download | Getting Started | Learning | Reference | Hardware | FAQ

Learning Examples | Foundations | Hacking | Links
DMX Master Device

Please see this updated tutorial on the playground.

Blog » | Forum » | Playground »

http://www.arduino.cc/
http://www.arduino.cc/en/Main/Buy
http://www.arduino.cc/en/Main/Software
http://www.arduino.cc/en/Guide/HomePage
http://www.arduino.cc/en/Reference/HomePage
http://www.arduino.cc/en/Main/Hardware
http://www.arduino.cc/en/Main/FAQ
http://www.arduino.cc/blog/
http://www.arduino.cc/cgi-bin/yabb2/YaBB.pl
http://www.arduino.cc/playground/
http://www.arduino.cc/en/Hacking/HomePage
http://www.arduino.cc/playground/Learning/DMX
http://www.arduino.cc/en/Site/AllRecentChanges

Arduino I |

Buy | Download | Getting Started | Learning | Reference | Hardware | FAQ Blog » | Forum » | Playground »

Learning Examples | Foundations | Hacking | Links

Arduino Software Serial Interface

Note: If you just want to use a software serial interface, see the SoftwareSerial library included with Arduino 0007 and later.
Read on if you'd like to know how that library works.

In this tutorial you will learn how to implement Asynchronous serial communication on the Arduino in software to
communicate with other serial devices. Using software serial allows you to create a serial connection on any of the digital i/o
pins on the Arduino. This should be used when multiple serial connections are necessary. If only one serial connection is
necessary the hardware serial port should be used. This is a general purpose software tutorial, NOT a specific device tutorial.
A tutorial on communicating with a computer is here. Device specific tutorials are on the Tutorial Page. For a good
explanation of serial communication see Wikipedia. The software serial connection can run at 4800 baud or 9600 baud
reliably.

Functions Available:
SWread(); Returns a byte long integer value from the software serial connection
Example:

byte RXval;
RXval = SWead();

SWoprint(); Sends a byte long integer value out the software serial connection
Example:

byte TXval = "h';
byte TXval 2 = 126;
SWori nt (TXval) ;
SWori nt (TXval 2);

Definitions Needed:

#define bit9600Del ay 84
#define hal fBi t9600Del ay 42
#define bit4800Del ay 188
#define hal f Bi t 4800Del ay 94

These definitions set the delays necessary for 9600 baud and 4800 baud software serial operation.
Materials needed:

« Device to communicate with

« Solderless breadboard

e Hookup wire

e Arduino Microcontroller Module

« Light emitting Diode (LED) - optional, for debugging

Prepare the breadboard

Insert the device you want to communicate with in the breadboard. Connect ground on the breadboard to ground from the
microcontroller. If your device uses 5v power connect 5v from the microcontoller to 5v on the breadboard. Otherwise connect
power and ground from an alternate power source to the breadboard in the same fashion. Make any other connections
necessary for your device. Additionally you may want to connect an LED for debugging purposes between pin 13 and Ground.

http://www.arduino.cc/
http://www.arduino.cc/en/Main/Buy
http://www.arduino.cc/en/Main/Software
http://www.arduino.cc/en/Guide/HomePage
http://www.arduino.cc/en/Reference/HomePage
http://www.arduino.cc/en/Main/Hardware
http://www.arduino.cc/en/Main/FAQ
http://www.arduino.cc/blog/
http://www.arduino.cc/cgi-bin/yabb2/YaBB.pl
http://www.arduino.cc/playground/
http://www.arduino.cc/en/Hacking/HomePage
http://www.arduino.cc/en/Reference/SoftwareSerial
http://www.arduino.cc/en/Reference/HomePage
http://www.arduino.cc/en/Main/LearnArduino
http://en.wikipedia.org/wiki/Serial_communication

Decide which pins you want to use for transmitting and receiving. In this example we will use pin 7 for transmitting and pin 6
for receiving, but any of the digital pins should work.

geswy WEEEN

Program the Arduino

Now we will write the code to enable serial data communication. This program will simply wait for a character to arrive in the
serial recieving port and then spit it back out in uppercase out the transmit port. This is a good general purpose serial
debugging program and you should be able to extrapolate from this example to cover all your basic serial needs. We will walk
through the code in small sections.

#i ncl ude <ctype. h>

#define bit9600Del ay 84
#define hal f Bi t 9600Del ay 42
#define bit4800Del ay 188
#define hal f Bi t 4800Del ay 94

Here we set up our pre-processor directives. Pre-processor directives are processed before the actual compilation begins.
They start with a "#" and do not end with semi-colons.

First we include the file ctype.h in our application. This gives us access to the t oupper () function from the Character
Operations C library which we will use later in our main loop. This library is part of the Arduino install, so you don't need to
do anything other than type the #include line in order to use it. Next we establish our baudrate delay definitions. These are
pre-processor directives that define the delays for different baudrates. The #defi ne bit9600Del ay 84 line causes the

compiler to substitute the number 84 where ever it encounters the label "bit9600Delay". Pre-processor definitions are often
used for constants because they don't take up any program memory space on the chip.

byte rx = 6;
byte tx = 7;
byte Swal;

Here we set our transmit (tx) and recieve (rx) pins. Change the pin numbers to suit your application. We also allocate a
variable to store our recieved data in, SWal .

void setup() {
pi nMode(rx, | NPUT) ;
pi nMbde(t x, OQUTPUT) ;
digital Wite(tx, H GH);
digital Wite(13,HHGH); //turn on debuggi ng LED
SWrint('h'); //debugging hello
SWrint('i');
SWorint(10); //carriage return
}

Here we initialize the lines, turn on our debugging LED and print a debugging message to confirm all is working as planned.
We can pass inidvidual characters or numbers to the SWprint function.

void SWrint(int data)
{
byt e nask;
//starthbit
digital Wite(tx, LON;
del ayM croseconds(bi t 9600Del ay) ;
for (mask = 0x01; nask>0; mask <<= 1) {
if (data & mask){ // choose bit
digitalWite(tx,HGH); // send 1

}
el se{
digital Wite(tx,LOW,; // send O
}
del ayM croseconds(bi t 9600Del ay) ;
}
//stop bit

digitalWite(tx, H GH);
del ayM croseconds(bi t 9600Del ay) ;
}

This is the SWprint function. First the transmit line is pulled low to signal a start bit. Then we itterate through a bit mask and
flip the output pin high or low 8 times for the 8 bits in the value to be transmitted. Finally we pull the line high again to
signal a stop bit. For each bit we transmit we hold the line high or low for the specified delay. In this example we are using
a 9600 baudrate. To use 4800 simply replace the variable bi t 9600Del ay with bi t 4800Del ay .

int SWead()
{
byte val = 0;
while (digital Read(rx));
//wait for start bit
if (digitalRead(rx) == LOW {
del ayM croseconds(hal f Bi t 9600Del ay) ;
for (int offset = 0; offset < 8; offset++) {
del ayM croseconds(bi t 9600Del ay) ;
val | = digital Read(rx) << offset;
}
//wait for stop bit + extra
del ayM croseconds(bi t 9600Del ay) ;
del ayM croseconds(bi t 9600Del ay) ;
return val;

}

This is the SWread function. This will wait for a byte to arrive on the recieve pin and then return it to the allocated variable.

First we wait for the recieve line to be pulled low. We check after a half bit delay to make sure the line is still low and we
didn't just recieve line noise. Then we iterate through a bit mask and shift 1s or Os into our output byte based on what we
recieve. Finally we allow a pause for the stop bit and then return the value.

void | oop()
{
SWal = SWead();
SWri nt (t oupper (SWal));
}
Finally we implement our main program loop. In this program we simply wait for characters to arrive, change them to

uppercase and send them back. This is always a good program to run when you want to make sure a serial connection is
working properly.

For lots of fun serial devices check out the Sparkfun online catalog. They have lots of easy to use serial modules for GPS,
bluetooth, wi-fi, LCDs, etc.

For easy copy and pasting the full program text of this tutorial is below:

/| Created August 15 2006
/ | Heat her Dewey- Hagborg
/1 http://ww.arduino.cc

#i ncl ude <ctype. h>

#define bit9600Del ay 84
#define hal fBi t9600Del ay 42
#define bit4800Del ay 188
#define hal fBi t4800Del ay 94

byte rx = 6;
byte tx = 7;
byte Swal;

void setup() {
pi nMbde(rx, | NPUT) ;
pi nMbde(t x, OQUTPUT) ;
digital Wite(tx, H GH);
digital Wite(13, HHGH); //turn on debuggi ng LED
SWrint("h'"); //debugging hello
SWrint("i');
SWorint(10); //carriage return

void SWrint(int data)
{
byt e nask;
//starthit
digital Wite(tx, LON;
del ayM croseconds(bi t 9600Del ay) ;
for (mask = 0x01; nask>0; mask <<= 1) {
if (data & mask){ // choose bit
digital Wite(tx,HHGH); // send 1
}
el se{
digital Wite(tx,LOW,; // send O
}
del ayM croseconds(bi t 9600Del ay) ;
}
//stop bit
digitalWite(tx, HGH;
del ayM croseconds(bi t 9600Del ay) ;

int SWead()
{

http://www.sparkfun.com/commerce/categories.php

byte val = 0;
while (digital Read(rx));
//wait for start bit
if (digitalRead(rx) == LOW {
del ayM croseconds(hal f Bi t 9600Del ay) ;
for (int offset = 0; offset < 8; offset++) {
del ayM cr oseconds(bi t 9600Del ay) ;
val | = digital Read(rx) << offset;
}
//wait for stop bit + extra
del ayM cr oseconds(bi t 9600Del ay) ;
del ayM croseconds(bi t 9600Del ay) ;

return val;
}
}
voi d | oop()
{
SWal = SWead();
SWri nt (t oupper (SWal));
}

code and tutorial by Heather Dewey-Hagborg

http://www.arduino.cc/en/Site/AllRecentChanges

Arduino I |

Buy | Download | Getting Started | Learning | Reference | Hardware | FAQ Blog » | Forum » | Playground »

Learning Examples | Foundations | Hacking | Links

RS-232

In this tutorial you will learn how to communicate with a computer using a MAX3323 single channel RS-232 driver/receiver
and a software serial connection on the Arduino. A general purpose software serial tutorial can be found here.

Materials needed:

« Computer with a terminal program installed (ie. HyperTerminal or RealTerm on the PC, Zterm on Mac)
« Serial-Breadboard cable

« MAX3323 chip (or similar)

e 4 1uf capacitors

« Solderless breadboard

o Hookup wire

« Arduino Microcontroller Module

e Light emitting Diode (LED) - optional, for debugging

Prepare the breadboard

TOP VIEW

ot [1] ° 6] Ve
v+ [2] 15] GND

o 3] aaxam [S
oo [4] maxsasE i3] w

c2- [5 12] RENABLE
(5] 12]
v-[6 11] TXENABLE
(5 11]
TouTs [7] 10] TINY
RINY [8 9] RouTy

TSSOP/DIP

Insert the MAX3323 chip in the breadboard. Connect 5V power and ground from the breadboard to 5V power and ground
from the microcontroller. Connect pin 15 on the MAX233 chip to ground and pins 16 and 14 - 11 to 5V. If you are using an
LED connect it between pin 13 and ground.

http://www.arduino.cc/
http://www.arduino.cc/en/Main/Buy
http://www.arduino.cc/en/Main/Software
http://www.arduino.cc/en/Guide/HomePage
http://www.arduino.cc/en/Reference/HomePage
http://www.arduino.cc/en/Main/Hardware
http://www.arduino.cc/en/Main/FAQ
http://www.arduino.cc/blog/
http://www.arduino.cc/cgi-bin/yabb2/YaBB.pl
http://www.arduino.cc/playground/
http://www.arduino.cc/en/Hacking/HomePage

EEmEmmEmEE s
mEmEm mEmam

L.

+5v wires are red, GND wires are black

Connect a 1uF capacitor across pins 1 and 3, another across pins 4 and 5, another between pin 1 and ground, and the last
between pin 6 and ground. If you are using polarized capacitors make sure the negative pins connect to the negative sides
(pins 3 and 5 and ground).

+5v wires are red, GND wires are black

Determine which Arduino pins you want to use for your transmit (TX) and recieve (RX) lines. In this tutorial we will be using
Arduino pin 6 for receiving and pin 7 for transmitting. Connect your TX pin (7) to MAX3323 pin 10 (T1IN). Connect your RX
pin (6) to MAX3323 pin 9 (R10UT).

TX wire Green, RX wire Blue, +5v wires are red, GND wires are black

Cables

6 7 8 9

Pin Signal Pin Signal
1 Data Carrier Detect i Data Set Ready
2 Received Data i Request to Send
3 Transmifted Data 8 Clear to Send
4 Data Terminal Ready 9 Ring Indicator
5 Signal Ground

(DB9 Serial Connector Pin Diagram)

If you do not have one already, you need to make a cable to connect from the serial port (or USB-serial adapter) on your
computer and the breadboard. To do this, pick up a female DB9 connector from radioshack. Pick three different colors of wire,

one for TX, one for RX, and one for ground. Solder your TX wire to pin 2 of the DB9 connector, RX wire to pin 3 and Ground
to pin 5.

Connect pins 1 and 6 to pin 4 and pin 7 to pin 8. Heatshrink the wire connections to avoid accidental shorts.

Enclose the connector in a backshell to further protect the signal and enable easy unplugging from your serial port.

Connect the TX line from your computer to pin 8 (R1IN) on the MAX233 and the RX line to pin 7 (T10UT). Connect the
ground line from your computer to ground on the breadboard.

TX wires Green, RX wires Blue, +5v wires are red, GND wires are black

Program the Arduino

Now we will write the code to enable serial data communication. This program will simply wait for a character to arrive in the
serial recieving port and then spit it back out in uppercase out the transmit port. This is a good general purpose serial
debugging program and you should be able to extrapolate from this example to cover all your basic serial needs. Upload the
following code into the Arduino microcontroller module:

/] Created August 23 2006
/ | Heat her Dewey - Hagborg
//http://ww:.ardui no. cc

#incl ude <ctype. h>

#define bit9600Del ay 84
#define hal f Bi t 9600Del ay 42
#define bit4800Del ay 188
#define hal f Bi t 4800Del ay 94

byte rx = 6;
byte tx = 7;
byte Swal;

void setup() {
pi nMode(rx, | NPUT) ;
pi nMbde(t x, OQUTPUT) ;
digital Wite(tx, H GH);
digital Wite(13,HHGH); //turn on debuggi ng LED
SWrint('h'); //debugging hello

SWrint("i');

SWorint(10); //carriage return
}
void SWrint(int data)
{

byte nask;

//starthit

digital Wite(tx, LOW;

del ayM cr oseconds(bi t 9600Del ay) ;

for (mask = 0x01; mask>0; mask <<= 1) {
if (data & mask){ // choose bit
digitalWite(tx,HG); // send 1
}

el se{

digital Wite(tx,LOW; // send O
}
del ayM croseconds(bi t 9600Del ay) ;
}
//stop bit
digitalWite(tx, HGH;
del ayM croseconds(bi t 9600Del ay) ;

int SWead()
{
byte val = 0;
while (digital Read(rx));
/lwait for start bit
if (digital Read(rx) == LOWN {
del ayM croseconds(hal f Bi t 9600Del ay) ;
for (int offset = 0; offset < 8; offset++) {
del ayM croseconds(bi t 9600Del ay) ;
val |= digital Read(rx) << offset;
}
//wait for stop bit + extra
del ayM croseconds(bi t 9600Del ay) ;
del ayM croseconds(bi t 9600Del ay) ;

return val;
}
}
voi d | oop()
{
SWal = SWead();
SWori nt (toupper (SWal));
}

Open up your serial terminal program and set it to 9600 baud, 8 data bits, 1 stop bit, no parity, no hardware flow control.
Press the reset button on the arduino board. The word "hi" should appear in the terminal window followed by an advancement
to the next line. Here is a shot of what it should look like in Hyperterminal, the free pre-installed windows terminal
application.

.

7+ 9600_baud_serial - HyperTerminal

Now, try typing a lowercase character into the terminal window. You should see the letter you typed return to you in
uppercase.

600_baud_serial - HyperTerminal

[hi
ABCDEFG.

If this works, congratulations! Your serial connection is working as planned. You can now use your new serial/computer
connection to print debugging statements from your code, and to send commands to your microcontroller.

code and tutorial by Heather Dewey-Hagborg, photos by Thomas Dexter

http://www.arduino.cc/en/Site/AllRecentChanges

Arduino I |

Buy | Download | Getting Started | Learning | Reference | Hardware | FAQ Blog » | Forum » | Playground »

Learning Examples | Foundations | Hacking | Links

Interfacing a Serial EEPROM Using SPI

In this tutorial you will learn how to interface with an AT25HP512 Atmel serial EEPROM using the Serial Peripheral Interface
(SPI) protocol. EEPROM chips such as this are very useful for data storage, and the steps we will cover for implementing SPI
communication can be modified for use with most other SPI devices. Note that the chip on the Arduino board contains an
internal EEPROM, so follow this tutorial only if you need more space than it provides.

Materials Needed:

« AT25HP512 Serial EEPROM chip (or similar)
e« Hookup wire
e Arduino Microcontroller Module

Introduction to the Serial Peripheral Interface

Serial Peripheral Interface (SPI) is a synchronous serial data protocol used by Microcontrollers for communicating with one or
more peripheral devices quickly over short distances. It can also be used for communication between two microcontrollers.

With an SPI connection there is always one master device (usually a microcontroller) which controls the peripheral devices.
Typically there are three lines common to all the devices,

e Master In Slave Out (MISO) - The Slave line for sending data to the master,

« Master Out Slave In (MOSI) - The Master line for sending data to the peripherals,

« Serial Clock (SCK) - The clock pulses which synchronize data transmission generated by the master, and

« Slave Select pin - allocated on each device which the master can use to enable and disable specific devices and avoid
false transmissions due to line noise.

The difficult part about SPI is that the standard is loose and each device implements it a little differently. This means you
have to pay special attention to the datasheet when writing your interface code. Generally speaking there are three modes of
transmission numbered O - 3. These modes control whether data is shifted in and out on the rising or falling edge of the data
clock signal, and whether the clock is idle when high or low.

All SPI settings are determined by the Arduino SPI Control Register (SPCR). A register is just a byte of microcontroller
memory that can be read from or written to. Registers generally serve three purposes, control, data and status.

Control registers code control settings for various microcontroller functionalities. Usually each bit in a control register effects a
particular setting, such as speed or polarity.

Data registers simply hold bytes. For example, the SPI data register (SPDR) holds the byte which is about to be shifted out
the MOSI line, and the data which has just been shifted in the MISO line.

Status registers change their state based on various microcontroller conditions. For example, the seventh bit of the SPI status
register (SPSR) gets set to 1 when a value is shifted in or out of the SPI.

The SPI control register (SPCR) has 8 bits, each of which control a particular SPI setting.

SPCR
|7 | 6 | 5 | 4 | 3 | 2 | 1 | O |
| SPIE| SPE | DORD | MSTR | CPOL | CPHA | SPRL | SPRO |

SPIE - Enables the SPI interrupt when 1

SPE - Enables the SPI when 1

DORD - Sends data least Significant Bit First when 1, nobst Significant Bit first when 0
MBTR - Sets the Arduino in naster node when 1, slave node when 0O

CPOL - Sets the data clock to be idle when high if set to 1, idle when low if set to O
CPHA - Sanples data on the falling edge of the data clock when 1, rising edge when 0

http://www.arduino.cc/
http://www.arduino.cc/en/Main/Buy
http://www.arduino.cc/en/Main/Software
http://www.arduino.cc/en/Guide/HomePage
http://www.arduino.cc/en/Reference/HomePage
http://www.arduino.cc/en/Main/Hardware
http://www.arduino.cc/en/Main/FAQ
http://www.arduino.cc/blog/
http://www.arduino.cc/cgi-bin/yabb2/YaBB.pl
http://www.arduino.cc/playground/
http://www.arduino.cc/en/Hacking/HomePage

SPR1 and SPRO - Sets the SPI speed, 00 is fastest (4MHz) 11 is slowest (250KHz)

This means that to write code for a new SPI device you need to note several things and set the SPCR accordingly:

« Is data shifted in MSB or LSB first?

« Is the data clock idle when high or low?

+« Are samples on the rising or falling edge of clock pulses?
« What speed is the SPI running at?

Once you have your SPI Control Register set correctly you just need to figure out how long you need to pause between
instructions and you are ready to go. Now that you have a feel for how SPI works, let's take a look at the details of the
EEPROM chip.

Introduction to Serial EEPROM

Pin Configurations

Pin Name | Function
Cs Chip Select

SCK Serial Data Clock
Sl Serial Data Input
S0 Serial Data Cutput
GMND Ground
VCC Power Supply
WP Write Protect
HOLD Suspends Serial Input

B-pin PDIP
L=

os 1 gl lvoe

so[]=2 " how

wel]® 8 sck
GHND [4 E]s!

The AT25HP512 is a 65,536 byte serial EEPROM. It supports SPI modes O and 3, runs at up to 10MHz at 5v and can run at
slower speeds down to 1.8v. It's memory is organized as 512 pages of 128 bytes each. It can only be written 128 bytes at a
time, but it can be read 1-128 bytes at a time. The device also offers various degerees of write protection and a hold pin,
but we won't be covering those in this tutorial.

The device is enabled by pulling the Chip Select (CS) pin low. Instructions are sent as 8 bit operational codes (opcodes) and
are shifted in on the rising edge of the data clock. It takes the EEPROM about 10 milliseconds to write a page (128 bytes) of
data, so a 10ms pause should follow each EEPROM write routine.

Prepare the Breadboard

Insert the AT25HP512 chip into the breadboard. Connect 5V power and ground from the breadboard to 5V power and ground
from the microcontroller. Connect EEPROM pins 3, 7 and 8 to 5v and pin 4 to ground.

+5v wires are red, GND wires are black

Connect EEPROM pin 1 to Arduino pin 10 (Slave Select - SS), EEPROM pin 2 to Arduino pin 12 (Master In Slave Out - MISO),
EEPROM pin 5 to Arduino pin 11 (Master Out Slave In - MOSI), and EEPROM pin 6 to Arduino pin 13 (Serial Clock - SCK).

rrLLL
-

EEEE N
(L

T LLLLLL
TLLLE L.

s sasam
jamss msmnt

SS wire is white, MISO wire is yellow, MOSI wire is blue, SCK wire is green

Program the Arduino

Now we will write the code to enable SPI communication between the EEPROM and the Arduino. In the setup routine this
program fills 128 bytes, or one page of the EEPROM with data. In the main loop it reads that data back out, one byte at a
time and prints that byte out the built in serial port. We will walk through the code in small sections.

The first step is setting up our pre-processor directives. Pre-processor directives are processed before the actual compilation
begins. They start with a "#" and do not end with semi-colons.

We define the pins we will be using for our SPI connection, DATAOUT, DATAIN, SPICLOCK and SLAVESELECT. Then we define
our opcodes for the EEPROM. Opcodes are control commands:

#define DATAOUT 11// MoSI
#define DATAIN 12//M SO
#define SPICLOCK 13//sck
#define SLAVESELECT 10//ss

/ | opcodes

#define WREN
#define WRDI

#defi ne RDSR
#defi ne WRSR
#defi ne READ
#define WRITE

N Wk OO

Here we allocate the global variables we will be using later in the program. Note char buffer [128]; . this is a 128 byte
array we will be using to store the data for the EEPROM write:

byte eeprom out put _dat a;
byte eeprom.i nput _dat a=0;
byte clr;

int address=0;

//data buffer

char buffer [128];

First we initialize our serial connection, set our input and output pin modes and set the SLAVESELECT line high to start. This
deselects the device and avoids any false transmission messages due to line noise:

voi d setup()

{
Seri al . begi n(9600) ;

pi nMbde(DATAQUT, QUTPUT) ;

pi nMbde(DATAI N, | NPUT) ;

pi nMbde(SPI CLOCK, QUTPUT) ;

pi nMbde(SLAVESELECT, QUTPUT) ;

digital Wite(SLAVESELECT, H GH); //disable device

Now we set the SPI Control register (SPCR) to the binary value 01010000. In the control register each bit sets a different
functionality. The eighth bit disables the SPI interrupt, the seventh bit enables the SPI, the sixth bit chooses transmission
with the most significant bit going first, the fifth bit puts the Arduino in Master mode, the fourth bit sets the data clock idle
when it is low, the third bit sets the SPI to sample data on the rising edge of the data clock, and the second and first bits
set the speed of the SPI to system speed / 4 (the fastest). After setting our control register up we read the SPI status
register (SPSR) and data register (SPDR) in to the junk clr variable to clear out any spurious data from past runs:

/1 SPCR = 01010000

/linterrupt disabled, spi enabled, nsb 1st,master,clk |ow when idle,
//sanple on |eading edge of clk,system clock/4 rate (fastest)
SPCR = (1<<SPE)| (1<<MSTR);

cl r=SPSR;

cl r =SPDR;

del ay(10);

Here we fill our data array with numbers and send a write enable instruction to the EEPROM. The EEPROM MUST be write
enabled before every write instruction. To send the instruction we pull the SLAVESELECT line low, enabling the device, and
then send the instruction using the spi_transfer function. Note that we use the WREN opcode we defined at the beginning of
the program. Finally we pull the SLAVESELECT line high again to release it:

/1fill buffer with data
fill_buffer();

I1fill eeprom w buffer

di gital Wite(SLAVESELECT, LOW ;

spi _transfer(WREN); //wite enable
digital Wite(SLAVESELECT, H GH) ;

Now we pull the SLAVESELECT line low to select the device again after a brief delay. We send a WRITE instruction to tell the
EEPROM we will be sending data to record into memory. We send the 16 bit address to begin writing at in two bytes, Most
Significant Bit first. Next we send our 128 bytes of data from our buffer array, one byte after another without pause. Finally
we set the SLAVESELECT pin high to release the device and pause to allow the EEPROM to write the data:

del ay(10);

di gi tal Wi te(SLAVESELECT, LOW ;

spi _transfer(WRITE); //wite instruction

addr ess=0;

spi _transfer((char) (address>>8)); //send MSByte address first

spi _transfer((char) (address)); //send LSByte address
/lwite 128 bytes
for (int 1=0;1<128;1++)
{
spi _transfer(buffer[1]); //wite data byte
}
digital Wite(SLAVESELECT, H GH); //release chip
//wait for eepromto finish witing
del ay(3000);

We end the setup function by sending the word "hi" plus a line feed out the built in serial port for debugging purposes. This
way if our data comes out looking funny later on we can tell it isn't just the serial port acting up:

Serial.print('h',BYTE);
Serial.print('i',BYTE);
Serial.print('\n",BYTE);//debug
del ay(1000);

}

In our main loop we just read one byte at a time from the EEPROM and print it out the serial port. We add a line feed and a
pause for readability. Each time through the loop we increment the eeprom address to read. When the address increments to
128 we turn it back to O because we have only filled 128 addresses in the EEPROM with data:

voi d | oop()

{
eeprom out put _data = read_eepron(address);
Serial . print (eeprom out put_dat a, DEC);
Serial.print('\n",BYTE);
addr ess++;
del ay(500); //pause for readability

}

The fill_buffer function simply fills our data array with numbers O - 127 for each index in the array. This function could easily
be changed to fill the array with data relevant to your application:

void fill_buffer()
{
for (int 1=0;1<128;1++)

{
buffer[I]=l;

}

The spi_transfer function loads the output data into the data transmission register, thus starting the SPI transmission. It polls
a bit to the SPI Status register (SPSR) to detect when the transmission is complete using a bit mask, SPIF. An explanation of
bit masks can be found here. It then returns any data that has been shifted in to the data register by the EEPROM:

char spi_transfer(volatile char data)

{
SPDR = dat a; /1 Start the transm ssion
while (!(SPSR & (1<<SPIF))) /1 Wait for the end of the transmission
{
}
return SPDR; /Il return the received byte
}

The read_eeprom function allows us to read data back out of the EEPROM. First we set the SLAVESELECT line low to enable
the device. Then we transmit a READ instruction, followed by the 16-bit address we wish to read from, Most Significant Bit
first. Next we send a dummy byte to the EEPROM for the purpose of shifting the data out. Finally we pull the SLAVESELECT
line high again to release the device after reading one byte, and return the data. If we wanted to read multiple bytes at a
time we could hold the SLAVESELECT line low while we repeated the data = spi_transfer(0xFF); up to 128 times for a full
page of data:

byte read_eepron(int EEPROM address)
{

/| READ EEPROM

int data;

digital Wite(SLAVESELECT, LOW ;

spi _transfer(READ); //transnmit read opcode
spi _transfer((char)(EEPROM addr ess>>8)); //send MSByte address first
spi _transfer((char)(EEPROM address)); //send LSByte address
data = spi_transfer(OxFF); //get data byte

digital Wite(SLAVESELECT, H GH); //release chip, signal end transfer
return data;

}

For easy copy and pasting the full program text of this tutorial is below:

#define DATACQUT 11//MOSI
#define DATAIN 12//M SO
#define SPICLOCK 13//sck
#define SLAVESELECT 10//ss

/ | opcodes
#defi ne WREN
#defi ne WRDI
#defi ne RDSR
#define WRSR
#defi ne READ
#define WRITE

N Wk OO

byte eeprom out put _dat a;
byte eeprom.i nput _dat a=0;
byte clr;

int address=0;

//data buffer

char buffer [128];

void fill _buffer()

{
for (int 1=0;1<128;1++)
{
buffer[I]=l;
}
}
char spi_transfer(volatile char data)
{
SPDR = dat a; /] Start the transm ssion
while (!(SPSR & (1<<SPIF))) /1 Wait the end of the transm ssion
{
b
return SPDR; /Il return the received byte
}

voi d setup()

{
Seri al . begi n(9600) ;

pi nMbde(DATAQUT, QUTPUT) ;

pi nMode(DATAIN, | NPUT) ;

pi nMbde(SPI CLOCK, QUTPUT) ;

pi nMbde(SLAVESELECT, QUTPUT) ;

digital Wite(SLAVESELECT, H GH); //disable device

/1 SPCR = 01010000

/linterrupt disabled, spi enabled, nsb 1st,master,clk |ow when idle,
//sanpl e on |eading edge of clk,system clock/4 rate (fastest)
SPCR = (1<<SPE)| (1<<MSTR);

cl r=SPSR;

cl r =SPDR;

del ay(10);

/1fill buffer with data

fill_buffer();

/1fill eeprom w buffer

di gi tal Wi te(SLAVESELECT, LOW ;

spi _transfer(WREN); //wite enable

di gi tal Wite(SLAVESELECT, H GH) ;

del ay(10);

di gital Wite(SLAVESELECT, LOW ;

spi _transfer(WRITE); //wite instruction

addr ess=0;
spi _transfer((char)(address>>8)); //send MSByte address first
spi _transfer((char) (address)); //send LSByte address

/lwite 128 bytes
for (int 1=0;1<128;1++)
{

spi _transfer(buffer[1]); //wite data byte
}
digital Wite(SLAVESELECT, H GH); //release chip
//wait for eepromto finish witing
del ay(3000);
Serial.print('h', BYTE);
Serial.print('i',BYTE);
Serial.print('\n",BYTE);//debug
del ay(1000);

byte read_eepron(int EEPROM address)

{
/| READ EEPROM
int data;
digital Wite(SLAVESELECT, LOW ;
spi _transfer(READ); //transmt read opcode
spi _transfer((char)(EEPROM address>>8)); //send MSByte address first
spi _transfer((char)(EEPROM address)); //send LSByte address
data = spi_transfer(OxFF); //get data byte
digital Wite(SLAVESELECT, H GH); //release chip, signal end transfer
return data;

voi d | oop()
{
eeprom out put _data = read_eepron(address);
Serial . print (eeprom out put_dat a, DEC);
Serial.print('\n', BYTE);
addr ess++;
if (address == 128)
address = 0;
del ay(500); //pause for readability

code and tutorial by Heather Dewey-Hagborg, photos by Thomas Dexter

http://www.arduino.cc/en/Site/AllRecentChanges

Arduino I |

Buy | Download | Getting Started | Learning | Reference | Hardware | FAQ Blog » | Forum » | Playground »

Learning Examples | Foundations | Hacking | Links

Controlling a Digital Potentiometer Using SPI

In this tutorial you will learn how to control the AD5206 digital potentiometer using Serial Peripheral Interface (SPI). For an
explanation of SPI see the SPI EEPROM tutorial. Digital potentiometers are useful when you need to vary the resistance in a
ciruit electronically rather than by hand. Example applications include LED dimming, audio signal conditioning and tone
generation. In this example we will use a six channel digital potentiometer to control the brightness of six LEDs. The steps we
will cover for implementing SPI communication can be modified for use with most other SPI devices.

Materials Needed:

« AD5206 Digital Potentiometer
e Arduino Microcontroller Module
e 6 Light Emitting Diodes (LEDs)
« Hookup Wire

Introduction to the AD5206 Digital Potentiometer

ME 24| B4
we[z] 23] wa
B6[2] 22] A4
GND [4] 21] B2
ﬁE 20| w2
Voo[£] AD5206 [i5a2
soi[7] Scan [elat
CLK]| 8 17|Wi1
Vss[2] 18] B1
B5| 10 15| A3
Wsl11 14| W3
A5z 13| B3

http://www.arduino.cc/
http://www.arduino.cc/en/Main/Buy
http://www.arduino.cc/en/Main/Software
http://www.arduino.cc/en/Guide/HomePage
http://www.arduino.cc/en/Reference/HomePage
http://www.arduino.cc/en/Main/Hardware
http://www.arduino.cc/en/Main/FAQ
http://www.arduino.cc/blog/
http://www.arduino.cc/cgi-bin/yabb2/YaBB.pl
http://www.arduino.cc/playground/
http://www.arduino.cc/en/Hacking/HomePage

AD5206 PIN FUNCTION DESCRIPTIONS

Pin

No. Name Description

1 Ab A Terminal RDAC #6.

2 W6 Wiper RDAC #6, addr = 101..

3 Bo6 B Terminal RDAC #6.

4 GND Ground.

5 c8 Chip Select Input, Active Low. When CS

returns high, data in the serial input register
is decoded based on the address bits and
loaded into the target RDAC latch.

b Voo Positive power supply, specified for
operation at both +3 V or +3 V. (Sum of
| Vop| + [Vss| <3.53V.)

T sDI Serial Darta Input. MSB First.
B CLK Serial Clock Input, positive edge triggerad.
0 Vssg Negative Power Supply, specified for

operation at both 0 Vor -2.7 V. (Sum of
| Vop| + [Vss| <5.5V.)

10 | B5 B Terminal RDAC #5.
11 W5 Wiper RDAC #5, addr = 100,
12 | A5 A Terminal RDAC #5.
13 | B3 B Terminal RDAC #3.
14 | W3 Wiper RDAC #3, addr = 010,.
15 A3 A Terminal RDAC #3.
16 | Bl B Terminal RDAC #1.
17 | Wi Wiper RDAC #1, addr = 000,
18 | Al A Terminal RDAC #1.
10 | A2 A Terminal RDAC #2.
20 | w2 Wiper RDAC #2, addr = 001,.
21 B2 B Terminal RDAC #2.
22 Ad A Terminal RDAC #4.
23 | w4 Wiper RDAC #4, addr = 011,.
24 | B4 B Terminal RDAC #4.

The AD5206 is a 6 channel digital potentiometer. This means it has six variable resistors (potentiometers) built in for
individual electronic control. There are three pins on the chip for each of the six internal variable resistors, and they can be
interfaced with just as you would use a mechanical potentiometer. The individual variable resistor pins are labeled Ax, Bx and
Wx, ie. Al, B1 and W1.

For example, in this tutorial we will be using each variable resistor as a voltage divider by pulling one side pin (pin B) high,
pulling another side pin (pin A) low and taking the variable voltage output of the center pin (Wiper).

The AD5206 is digitally controlled using SPI. The device is enabled by pulling the Chip Select (CS) pin low. Instructions are
sent as 11 bit operational codes (opcodes) with the three most significant bits (11-9) defining the address of which
potentiometer to adjust and the eight least significant bits (8-1) defining what value to set that potentiometer to from 0-255.
Data is shifted in Most Significant Bit (MSB) first on the rising edge of the data clock. The data clock is idle when low, and
the interface runs much faster than the Arduino, so we don't need to worry about pre-scaling to slow down the transmission.

Prepare the Breadboard

Insert the AD5206 chip into the breadboard. Connect 5V power and ground from the breadboard to 5V power and ground
from the microcontroller. Connect AD5206 pins 3, 6, 10, 13, 16, 21 and 24 to 5v and pins 1, 4, 9, 12, 15, 18, 19, and 22 to
ground. We are connecting all the A pins to ground and all of the B pins to 5v to create 6 voltage dividers.

Connect AD5206 pin 5 to Arduino pin 10 (Slave Select - SS), AD5206 pin 7 to Arduino pin 11 (Master Out Slave In - MOSI),
and AD5206 pin 8 to Arduino pin 13 (Serial Clock - SCK).

ne
paBAE

Finally, connect an LED between each Wiper pin (AD5206 pins 2, 11, 14, 17, 20 and 23) and ground so that the long pin of
the LED connects to the wiper and the short pin, or flat side of the LED connects to ground.

Program the Arduino

Now we will write the code to enable SPI control of the AD5206. This program will sequentially pulse each LED on and then
fade it out gradually. This is accomplished in the main loop of the program by individually changing the resistance of each
potentiometer from full off to full on over its full range of 255 steps.

We will walk through the code in small sections.

We define the pins we will be using for our SPI connection, DATAOUT, DATAIN, SPICLOCK and SLAVESELECT. Although we
are not reading any data back out of the AD5206 in this program, pin 12 is attached to the builtin SPI so it is best not to
use it for other programming functions to avoid any possible errors:

#define DATAQUT 11//MOSI

#define DATAIN 12//M SO - not used, but part of builtin SPI
#define SPICLOCK 13//sck

#define SLAVESELECT 10//ss

Next we allocate variables to store resistance values and address values for the potentiometers:

byt e pot=0;
byte resistance=0;

First we set our input and output pin modes and set the SLAVESELECT line high to start. This deselects the device and avoids

any false transmission messages due to line noise:

voi d setup()
{
byte clr;
pi nMbde(DATAQUT, OUTPUT) ;
pi nMbde(DATAI N, | NPUT) ;
pi nvbde(SPI CLOCK, OQUTPUT) ;
pi nMbde(SLAVESELECT, QUTPUT) ;
digital Wite(SLAVESELECT, H GH); //disable device

Now we set the SPI Control register (SPCR) to the binary value 01010000. In the control register each bit sets a different
functionality. The eighth bit disables the SPI interrupt, the seventh bit enables the SPI, the sixth bit chooses transmission
with the most significant bit going first, the fifth bit puts the Arduino in Master mode, the fourth bit sets the data clock idle
when it is low, the third bit sets the SPI to sample data on the rising edge of the data clock, and the second and first bits
set the speed of the SPI to system speed / 4 (the fastest). After setting our control register up we read the SPI status
register (SPSR) and data register (SPDR) in to the junk clr variable to clear out any spurious data from past runs:

SPCR = (1<<SPE)| (1<<M5TR);
cl r=SPSR;
cl r =SPDR;

del ay(10);

We conclude the setup function by setting all the potentiometers to full on resistance states thereby turning the LEDs off:

for (i=0;i<6;i++)
{
write_pot(i,255);

In our main loop we iterate through each resistance value (0-255) for each potentiometer address (0-5). We pause for 10
milliseconds each iteration to make the steps visible. This causes the LEDs to sequentially flash on brightly and then fade out
slowly:

voi d | oop()
{
write_pot(pot, resistance);
del ay(10);
resi stance++;
if (resistance==255)
{

pot ++;
if (pot==6)

pot =0;

The spi_transfer function loads the output data into the data transmission register, thus starting the SPI transmission. It polls
a bit to the SPI Status register (SPSR) to detect when the transmission is complete using a bit mask, SPIF. An explanation of
bit masks can be found here. It then returns any data that has been shifted in to the data register by the EEPROM:

char spi_transfer(volatile char data)

{
SPDR = dat a; // Start the transmni ssion
while (!'(SPSR & (1<<SPIF))) /1 Wait the end of the transm ssion
{
b
return SPDR; /1 return the received byte
}

The write_pot function allows us to control the individual potentiometers. We set the SLAVESELECT line low to enable the
device. Then we transfer the address byte followed by the resistance value byte. Finally, we set the SLAVSELECT line high
again to release the chip and signal the end of our data transfer.

byte wite_pot(int address, int value)
{
digital Wite(SLAVESELECT, LOW ;
/12 byte opcode
spi _transfer(address);
spi _transfer(val ue);
digital Wite(SLAVESELECT, H GH); //release chip, signal end transfer

LED video

For easy copy and pasting the full program text of this tutorial is below:

#defi ne DATAQUT 11// MOSI

#define DATAIN 12//M SO - not used, but part of builtin SPI
#define SPICLOCK 13//sck

#define SLAVESELECT 10//ss

byte pot =0;
byte resistance=0;

char spi_transfer(volatile char data)

{
SPDR = dat a; // Start the transm ssion
while (!(SPSR & (1<<SPIF))) /1 Wait the end of the transm ssion
{
¥
return SPDR; /1 return the received byte
}
void setup()
{
byte i;
byte clr;
pi nMode(DATAQUT, QUTPUT);
pi nMbde(DATAIN, | NPUT) ;
pi nvbde(SPI CLOCK, OQUTPUT) ;
pi nMbde(SLAVESELECT, QUTPUT) ;
digital Wite(SLAVESELECT, H GH); //disable device
/1 SPCR = 01010000
/linterrupt disabled, spi enabled, nsb 1st,master,clk |ow when idle,
//sanpl e on |eading edge of clk,system clock/4 (fastest)
SPCR = (1<<SPE)| (1<<M5TR);
cl r=SPSR;
cl r =SPDR;
del ay(10);
for (i=0;i<6;i++)
{
write_pot (i, 255);
}
}
byte wite_pot(int address, int value)
{
di gital Wite(SLAVESELECT, LOW ;
/12 byte opcode
spi _transfer(address);
spi _transfer(val ue);
digital Wite(SLAVESELECT, H GH); //release chip, signal end transfer
}
voi d | oop()
{
write_pot(pot, resistance);
del ay(10);
resi stance++;
if (resistance==255)
{
pot ++;
}
if (pot==6)
{
pot =0;
}
}

code, tutorial and photos by Heather Dewey-Hagborg

http://www.arduino.cc/en/Site/AllRecentChanges

Arduino I |

Buy | Download | Getting Started | Learning | Reference | Hardware | FAQ Blog » | Forum » | Playground »

Learning Examples | Foundations | Hacking | Links

Serial to Parallel Shifting-Out with a 74HC595

Started by Carlyn Maw and Tom Igoe Nov, 06

Shifting Out & the 595 chip

At sometime or another you may run out of pins on your Arduino board and need to extend it with shift registers. This
example is based on the 74HC595. The datasheet refers to the 74HC595 as an “8-bit serial-in, serial or parallel-out shift
register with output latches; 3-state.” In other words, you can use it to control 8 outputs at a time while only taking up a
few pins on your microcontroller. You can link multiple registers together to extend your output even more. (Users may also
wish to search for other driver chips with "595" or "596" in their part numbers, there are many. The STP16C596 for example
will drive 16 LED's and eliminates the series resistors with built-in constant current sources.)

How this all works is through something called “synchronous serial communication,” i.e. you can pulse one pin up and down
thereby communicating a data byte to the register bit by bit. It's by pulsing second pin, the clock pin, that you delineate
between bits. This is in contrast to using the “asynchronous serial communication” of the Serial.begin() function which relies
on the sender and the receiver to be set independently to an agreed upon specified data rate. Once the whole byte is
transmitted to the register the HIGH or LOW messages held in each bit get parceled out to each of the individual output pins.
This is the “parallel output” part, having all the pins do what you want them to do all at once.

The “serial output” part of this component comes from its extra pin which can pass the serial information received from the
microcontroller out again unchanged. This means you can transmit 16 bits in a row (2 bytes) and the first 8 will flow through
the first register into the second register and be expressed there. You can learn to do that from the second example.

“3 states” refers to the fact that you can set the output pins as either high, low or “high impedance.” Unlike the HIGH and
LOW states, you can’'t set pins to their high impedance state individually. You can only set the whole chip together. This is a
pretty specialized thing to do -- Think of an LED array that might need to be controlled by completely different
microcontrollers depending on a specific mode setting built into your project. Neither example takes advantage of this feature
and you won’t usually need to worry about getting a chip that has it.

Here is a table explaining the pin-outs adapted from the Phillip's datasheet.

PINS 1-7, 15 QO — Q7 | Output Pins
PIN 8 GND Ground, Vss
101 16| W
o] O 18] v PIN 9 Q7 Serial Out
az [z 15| Qo
PIN 10 MR Master Reclear, active low
Qa[a] 14] s
_ PIN 11 SH_CP Shift register clock pin
a4 [| 13| OE
QSE 395 EI 5T CP PIN 12 ST_CP Storage register clock pin (latch pin)
oele E EH CP PIN 13 OE Output enable, active low
Q?E 10] MR PIN 14 DS Serial data input
GND | 8 ajar PIN 16 Vcce Positive supply voltage
MLADD

Example 1: One Shift Register

The first step is to extend your Arduino with one shift register.

http://www.arduino.cc/
http://www.arduino.cc/en/Main/Buy
http://www.arduino.cc/en/Main/Software
http://www.arduino.cc/en/Guide/HomePage
http://www.arduino.cc/en/Reference/HomePage
http://www.arduino.cc/en/Main/Hardware
http://www.arduino.cc/en/Main/FAQ
http://www.arduino.cc/blog/
http://www.arduino.cc/cgi-bin/yabb2/YaBB.pl
http://www.arduino.cc/playground/
http://www.arduino.cc/en/Hacking/HomePage
http://en.wikipedia.org/wiki/High_impedance
http://www.arduino.cc/en/uploads/Tutorial/595datasheet.pdf

The Circuit
1. Turning iton

Make the following connections:

« GND (pin 8) to ground,
« Vcc (pin 16) to 5V
« OE (pin 13) to ground
¢ MR (pin 10) to 5V

This set up makes all of the output pins active and addressable all the time. The one flaw of this set up is that you end up
with the lights turning on to their last state or something arbitrary every time you first power up the circuit before the
program starts to run. You can get around this by controlling the MR and OE pins from your Arduino board too, but this way
will work and leave you with more open pins.

@ 5 E53 -
tuw O i
Cim W
L2 i
¥
'] E &
r o 5 E
&

a = &
T
3. Fe

7 CEEEEEEZD G

FELL) I
i (]
RECR

2. Connect to Arduino

e DS (pin 14) to Ardunio DigitalPin 11 (blue wire)
e SH_CP (pin 11) to to Ardunio DigitalPin 12 (yellow wire)
e ST_CP (pin 12) to Ardunio DigitalPin 8 (green wire)

From now on those will be refered to as the dataPin, the clockPin and the latchPin respectively. Notice the 0.1uf capacitor on
the latchPin, if you have some flicker when the latch pin pulses you can use a capacitor to even it out.

T .
woo B B
T o £~
T B
T2 L] i
i3 % z
2 I =3
B s :
w = '
:: = (-]
" SSESEEBLD .CI
AT I
asa 1k
[]
5 amd

3. Add 8 LEDs.

In this case you should connect the cathode (short pin) of each LED to a common ground, and the anode (long pin) of each
LED to its respective shift register output pin. Using the shift register to supply power like this is called sourcing current.
Some shift registers can't source current, they can only do what is called sinking current. If you have one of those it means
you will have to flip the direction of the LEDs, putting the anodes directly to power and the cathodes (ground pins) to the
shift register outputs. You should check the your specific datasheet if you aren’t using a 595 series chip. Don’t forget to add a
220-ohm resistor in series to protect the LEDs from being overloaded.

g 5 698
m
c @
H 2
-4
BeEEEEECS G
B O

Circuit Diagram

.55 22002
.5"5" 2200
—@®—\/\N oy
Q‘ 2200
.{k 2200
.55' 2200 FAHC555
—0—-_W_ a0 Ve
W 2200 Qi MR
_Q_W_ Q2 o5 ta microcentroller dataPin
as ST CF to microcontroller latchPin
ok 22010 g4 SH.CP to micrecontroller cdlodkPin
0 A" | a5 Qv
% 2200 Q& QE
—@ W a7 GND
1 pf

- —j—

The Code

Here are three code examples. The first is just some “hello world” code that simply outputs a byte value from O to 255. The
second program lights one LED at a time. The third cycles through an array.

FUNCTION TABLE
Saanota 1

e
H

FuNeTIoN
sH_cp[sT cp

z gl
oFF s
Q6 | me. [Ioge high lovel s into it rogiser stage 0
contais ofal st rgitersages shified trough, 3.

ar
L | ne |aLOWieualon R only stect
L
L

S e
o z|-|-|gf®
z| |-|-|3
z| w|xlx|8

x
1

x
3

previous state of siage 6 (internal Q8') appears on the.

)
B T O R [x [ae | on [contents of st regster stages (rternal Gny are

[ranetemea to the starage ragister and parailel cutput
stage:

B T [C | H [¥ |08 | On |[contenis of st register shifted though; previous
contents of the shitregister s transterred 10 the

1. H=HIGH voliage lovel:
L= LOW votags laval;
1= LOW-t0-HIGH transiton;
| = HIGH10-LOW transiton;
2= nighimpedance OFF state;
ne = no changa:
X=don' care

595 Logic Table

see _ LU LU U L L L LU

o 1
Ry Wa R Ea W Wa Wl o Wy I o IR o
WL L

N

595 Timing Diagram

The code is based on two pieces of information in the datasheet: the timing diagram and the logic table. The logic table is
what tells you that basically everything important happens on an up beat. When the clockPin goes from low to high, the shift
register reads the state of the data pin. As the data gets shifted in it is saved in an internal memory register. When the
latchPin goes from low to high the sent data gets moved from the shift registers aforementioned memory register into the
output pins, lighting the LEDs.

Code Sample 1.1 — Hello World
Code Sample 1.2 — One by One

http://www.arduino.cc/en/uploads/Tutorial/595_logic_table.png
http://www.arduino.cc/en/uploads/Tutorial/595_timing_diagram.png

Code Sample 1.3 — from Defined Array

Example 2

In this example you’ll add a second shift register, doubling the number of output pins you have while still using the same
number of pins from the Arduino.

The Circuit
1. Add a second shift register.

Starting from the previous example, you should put a second shift register on the board. It should have the same leads to
power and ground.

|

oo
EE

Erig el

Arduino NG S80F

D .'
L]

!ﬂﬂ:lﬁqh- ol

=
=

2. Connect the 2 registers.

Two of these connections simply extend the same clock and latch signal from the Arduino to the second shift register (yellow
and green wires). The blue wire is going from the serial out pin (pin 9) of the first shift register to the serial data input (pin
14) of the second register.

|

o
=]

Erig vl

Arduine NG 884

~ QD .'
LE}

s

3. Add a second set of LEDs.

In this case | added green ones so when reading the code it is clear which byte is going to which set of LEDs

Circuit Diagram

|

LR
=]

Erig vl

Arduino NG S88F

.. r
OEEEEEE0T

g l
E

s

e v ¥ +5W

0 2200
5:5,_ 2200 FAHCS05
_0 W S] Voo
W 2200 al e
_G_W_ az DS te micrecontroller dataPin
a aT_CP te microcontroller latchPim
o 2200 04 SH CP to microcontroller clockPin
s oy
5y 2200 a3 OF
_G_W ar GHD
1 pf
290 [} FAHCE0S |
= —
_® W on Voo _I
ol ME
220 0}
.‘5‘ oz b5
03 aT_CP
"5‘- 2300 04 SH_CP
——\\V\— s @
Y 230 11 Qe OE
@}\ ﬂ [L —1 27 GMD
Y 2200
.,B 2200
) 22001
{* 220
L L

The Code

Here again are three code samples. If you are curious, you might want to try the samples from the first example with this
circuit set up just to see what happens.

Code Sample 2.1 — Dual Binary Counters

There is only one extra line of code compared to the first code sample from Example 1. It sends out a second byte. This
forces the first shift register, the one directly attached to the Arduino, to pass the first byte sent through to the second
register, lighting the green LEDs. The second byte will then show up on the red LEDs.

Code Sample 2.2 — 2 Byte One By One

Comparing this code to the similar code from Example 1 you see that a little bit more has had to change. The blinkAll()
function has been changed to the blinkAll_2Bytes() function to reflect the fact that now there are 16 LEDs to control. Also, in
version 1 the pulsings of the latchPin were situated inside the subfunctions lightShiftPinA and lightShiftPinB(). Here they need
to be moved back into the main loop to accommodate needing to run each subfunction twice in a row, once for the green
LEDs and once for the red ones.

Code Sample 2.3 - Dual Defined Arrays

Like sample 2.2, sample 2.3 also takes advantage of the new blinkAll_2bytes() function. 2.3's big difference from sample 1.3
is only that instead of just a single variable called “data” and a single array called “dataArray” you have to have a dataRED,
a dataGREEN, dataArrayRED, dataArrayGREEN defined up front. This means that line

data = dataArray[j];
becomes

dat aRED = dataArrayRED[j];
dat aGREEN = dat aArrayGREEN[j];

and

shiftQut (dataPin, clockPin, data);

becomes

shi ftQut(dataPin, clockPin, dataGREEN);
shi ftQut (dataPin, clockPin, dataRED);

http://www.arduino.cc/en/Site/AllRecentChanges

Arduino I |

Buy | Download | Getting Started | Learning | Reference | Hardware | FAQ Blog » | Forum » | Playground »

Learning Examples | Foundations | Hacking | Links

X10 Library

This library enables you to send and receive X10 commands from an Arduino module. X10 is a synchronous serial protocol
that travels over AC power lines, sending a bit every time the AC power crosses zero volts. It's used in home automation.
You can find X10 controllers and devices at http://www.x10.com, http://www.smarthome.com, and more.

This library has been tested using the PL513 one-way X10 controller, and the TW523 two-way X10 controller. Both of these
are essentially X10 modems, converting the 5V output of the Arduino into AC signals on the zero crossing.

To connect an Arduino to one of these modules, get a phone cable with an RJ-11 connector, and cut one end off. Then wire
the pins as follows:

Looking at the =10 interface REII jack

PLE [3TWE |3

10 hterface

+5

10K

Cata Fin - To Arduing digital pin

Tero Crossing Fin - To Avrduing digital pin

Download: X10.zip

To use, unzip it and copy the resulting folder, called TextString, into the lib/targets/libraries directory of your arduino
application folder. Then re-start the Arduino application.

When you restart, you'll see a few warning messages in the debugger pane at the bottom of the program. You can ignore
them.

As of version 0.2, here's what you can do:

x10(int strLength) - initialize an instance of the X10 library on two digital pins. e.g.

x10 myHouse = x10(9, 10); // initializes X10 on pins 9 (zero crossing pin) and 10 (data pin)
void write(byte houseCode, byte numberCode, int numRepeats) - Send an X10 message, e.g.

nyHouse. wite(A, ALL_LIGHTS ON, 1); /1 Turns on all lights in house code A

version(void) - get the library version. Since there will be more functions added, printing the version is a useful debugging
tool when you get an error from a given function. Perhaps you're using an earlier version that doesn't feature the version you
need! e.g.

Serial . println(nyHouse. version()); /1 prints the version of the library

There are a number of constants added to make X10 easier. They are as follows:

e A through F: house code values.
e UNIT_1 through UNIT_16: unit code values

http://www.arduino.cc/
http://www.arduino.cc/en/Main/Buy
http://www.arduino.cc/en/Main/Software
http://www.arduino.cc/en/Guide/HomePage
http://www.arduino.cc/en/Reference/HomePage
http://www.arduino.cc/en/Main/Hardware
http://www.arduino.cc/en/Main/FAQ
http://www.arduino.cc/blog/
http://www.arduino.cc/cgi-bin/yabb2/YaBB.pl
http://www.arduino.cc/playground/
http://www.arduino.cc/en/Hacking/HomePage
http://www.x10.com/
http://www.smarthome.com/
http://www.arduino.cc/en/uploads/Tutorial/X10.zip

« ALL_UNITS_OFF
« ALL_LIGHTS_ON

. ON

« OFF

. DIM

« BRIGHT

« ALL_LIGHTS_OFF

. EXTENDED_CODE

« HAIL_REQUEST

« HAIL_ACKNOWLEDGE
« PRE_SET DIM

. EXTENDED_DATA

« STATUS_ON

. STATUS_ OFF

o STATUS REQUEST

For a full explanation of X10 and these codes, see this technote

If anyone's interested in helping to develop this library further, please contact me at tom.igoe at gmail.com

http://www.x10pro.com/pro/pdf/technote.pdf
http://www.arduino.cc/en/Site/AllRecentChanges

Arduino

Buy | Download | Getting Started | Learning | Reference | Hardware | FAQ Blog » | Forum » | Playground »

Learning Examples | Foundations | Hacking | Links

Examples > EEPROM Library

EEPROM Clear
Sets all of the bytes of the EEPROM to 0.
Code

#i ncl ude <EEPROM h>

voi d setup()
{
/I wite a 0 to all 512 bytes of the EEPROM
for (int i = 0; i < 512; i++)
EEPROM write(i, 0);

/1 turn the LED on when we're done
digital Wite(13, H GH);

voi d | oop()

{
}

See also

« EEPROM Read example
« EEPROM Write example
« EEPROM library reference

http://www.arduino.cc/
http://www.arduino.cc/en/Main/Buy
http://www.arduino.cc/en/Main/Software
http://www.arduino.cc/en/Guide/HomePage
http://www.arduino.cc/en/Reference/HomePage
http://www.arduino.cc/en/Main/Hardware
http://www.arduino.cc/en/Main/FAQ
http://www.arduino.cc/blog/
http://www.arduino.cc/cgi-bin/yabb2/YaBB.pl
http://www.arduino.cc/playground/
http://www.arduino.cc/en/Hacking/HomePage
http://www.arduino.cc/en/Reference/EEPROM
http://www.arduino.cc/en/Site/AllRecentChanges

Arduino

Buy | Download | Getting Started | Learning | Reference | Hardware | FAQ

Blog » | Forum » | Playground »

Learning Examples | Foundations | Hacking | Links

Examples > EEPROM Library

EEPROM Read

Reads the value of each byte of the EEPROM and prints it to the computer.
Code

#i ncl ude <EEPROM h>

/1 start reading fromthe first byte (address 0) of the EEPROM
int address = 0;
byte val ue;

voi d setup()

{
Seri al . begi n(9600) ;

void | oop()

{
/'l read a byte fromthe current address of the EEPROM

val ue = EEPROM r ead(address);

Serial . print(address);
Serial.print("\t");
Serial . print(value, DEC);
Serial.println();

/1 advance to the next address of the EEPROM
address = address + 1;

/1 there are only 512 bytes of EEPROM from O to 511, so if we're
/1 on address 512, wap around to address O
if (address == 512)

address = 0;

del ay(500) ;

See also

« EEPROM Clear example
« EEPROM Write example
« EEPROM library reference

http://www.arduino.cc/
http://www.arduino.cc/en/Main/Buy
http://www.arduino.cc/en/Main/Software
http://www.arduino.cc/en/Guide/HomePage
http://www.arduino.cc/en/Reference/HomePage
http://www.arduino.cc/en/Main/Hardware
http://www.arduino.cc/en/Main/FAQ
http://www.arduino.cc/blog/
http://www.arduino.cc/cgi-bin/yabb2/YaBB.pl
http://www.arduino.cc/playground/
http://www.arduino.cc/en/Hacking/HomePage
http://www.arduino.cc/en/Reference/EEPROM
http://www.arduino.cc/en/Site/AllRecentChanges

Arduino

Buy | Download | Getting Started | Learning | Reference | Hardware | FAQ Blog » | Forum » | Playground »

Learning Examples | Foundations | Hacking | Links

Examples > EEPROM Library

EEPROM Write

Stores values read from analog input O into the EEPROM. These values will stay in the EEPROM when the board is turned off
and may be retrieved later by another sketch.

Code

#i ncl ude <EEPROM h>

/1 the current address in the EEPROM (i.e. which byte
// we're going to wite to next)
int addr = 0;

voi d setup()

I oop()

/1 need to divide by 4 because anal og inputs range from
/1 0 to 1023 and each byte of the EEPROM can only hold a
/1 value fromO to 255.

int val = anal ogRead(0) / 4;

/Il write the value to the appropriate byte of the EEPROM
/1 these values will renain there when the board is

/1 turned off.

EEPROM wri t e(addr, val);

/1 advance to the next address. there are 512 bytes in
/1 the EEPROM so go back to 0 when we hit 512.
addr = addr + 1;
if (addr == 512)
addr = 0;

del ay(100);

See also

« EEPROM Clear example
« EEPROM Read example
« EEPROM library reference

http://www.arduino.cc/
http://www.arduino.cc/en/Main/Buy
http://www.arduino.cc/en/Main/Software
http://www.arduino.cc/en/Guide/HomePage
http://www.arduino.cc/en/Reference/HomePage
http://www.arduino.cc/en/Main/Hardware
http://www.arduino.cc/en/Main/FAQ
http://www.arduino.cc/blog/
http://www.arduino.cc/cgi-bin/yabb2/YaBB.pl
http://www.arduino.cc/playground/
http://www.arduino.cc/en/Hacking/HomePage
http://www.arduino.cc/en/Reference/EEPROM
http://www.arduino.cc/en/Site/AllRecentChanges

Arduino

Buy | Download | Getting Started | Learning | Reference | Hardware | FAQ Blog » | Forum » | Playground »

Learning Examples | Foundations | Hacking | Links

Examples > Stepper Library

Motor Knob
Description

A stepper motor follows the turns of a potentiometer (or other sensor) on analog input 0. The unipolar or bipolar stepper is
controlled with pins 8, 9, 10, and 11, using one of the circuits on the linked pages.

Code

#i ncl ude <Stepper. h>

/1 change this to the nunber of steps on your notor
#define STEPS 100

/'l create an instance of the stepper class, specifying
/'l the nunber of steps of the notor and the pins it's
/'l attached to

St epper stepper (STEPS, 8, 9, 10, 11);

/1 the previous reading from the anal og input
int previous = 0;

voi d setup()

{
/1 set the speed of the notor to 30 RPMs

st epper . set Speed(30) ;

void | oop()
{

/'l get the sensor value
int val = anal ogRead(0);

/1 move a nunber of steps equal to the change in the
/1 sensor reading

st epper.step(val - previous);

/'l remenber the previous value of the sensor
previous = val;

See also

« Stepper library reference

http://www.arduino.cc/
http://www.arduino.cc/en/Main/Buy
http://www.arduino.cc/en/Main/Software
http://www.arduino.cc/en/Guide/HomePage
http://www.arduino.cc/en/Reference/HomePage
http://www.arduino.cc/en/Main/Hardware
http://www.arduino.cc/en/Main/FAQ
http://www.arduino.cc/blog/
http://www.arduino.cc/cgi-bin/yabb2/YaBB.pl
http://www.arduino.cc/playground/
http://www.arduino.cc/en/Hacking/HomePage
http://www.arduino.cc/en/Reference/StepperUnipolarCircuit
http://www.arduino.cc/en/Reference/StepperBipolarCircuit
http://www.arduino.cc/en/Reference/Stepper
http://www.arduino.cc/en/Site/AllRecentChanges

Arduino =

Buy | Download | Getting Started | Learning | Reference | Hardware | FAQ Blog » | Forum » | Playground »

Login to Arduino

Keep me logged in: [T

o]

http://www.arduino.cc/
http://www.arduino.cc/en/Main/Buy
http://www.arduino.cc/en/Main/Software
http://www.arduino.cc/en/Guide/HomePage
http://www.arduino.cc/en/Reference/HomePage
http://www.arduino.cc/en/Main/Hardware
http://www.arduino.cc/en/Main/FAQ
http://www.arduino.cc/blog/
http://www.arduino.cc/cgi-bin/yabb2/YaBB.pl
http://www.arduino.cc/playground/
http://www.arduino.cc/en/Site/AllRecentChanges

Arduino I |

Buy | Download | Getting Started | Learning | Reference | Hardware | FAQ Blog » | Forum » | Playground »

Tutorial. HomePage History

Hide minor edits - Show changes to markup

July 02, 2008, at 03:11 PM by David A. Mellis -
Changed lines 2-3 from:

Arduino Examples

to:

Examples

Restore
July 02, 2008, at 03:11 PM by David A. Mellis -
Changed lines 4-5 from:

See the foundations page for in-depth description of core concepts of the Arduino hardware and software, and the links
page for other documentation.

to:

See the foundations page for in-depth description of core concepts of the Arduino hardware and software; the hacking
page for information on extending and modifying the Arduino hardware and software; and the links page for other
documentation.

Restore
July 02, 2008, at 02:07 PM by David A. Mellis -
Added line 63:

« Read an ADXL3xx accelerometer

Restore
May 21, 2008, at 09:44 PM by David A. Mellis -
Deleted lines 42-45:

Matrix Library

« Hello Matrix?: blinks a smiley face on the LED matrix.

Restore
May 21, 2008, at 09:43 PM by David A. Mellis -
Added lines 43-46:

Matrix Library

« Hello Matrix?: blinks a smiley face on the LED matrix.

Restore
May 21, 2008, at 09:36 PM by David A. Mellis -
Added lines 43-46:

Stepper Library

« Motor Knob: control a stepper motor with a potentiometer.

Restore
May 21, 2008, at 09:25 PM by David A. Mellis - adding EEPROM examples.
Added lines 37-42:

http://www.arduino.cc/
http://www.arduino.cc/en/Main/Buy
http://www.arduino.cc/en/Main/Software
http://www.arduino.cc/en/Guide/HomePage
http://www.arduino.cc/en/Reference/HomePage
http://www.arduino.cc/en/Main/Hardware
http://www.arduino.cc/en/Main/FAQ
http://www.arduino.cc/blog/
http://www.arduino.cc/cgi-bin/yabb2/YaBB.pl
http://www.arduino.cc/playground/
http://www.arduino.cc/en/Hacking/HomePage
http://www.arduino.cc/en/Hacking/HomePage

EEPROM Library

« EEPROM Clear: clear the bytes in the EEPROM.
« EEPROM Read: read the EEPROM and send its values to the computer.
« EEPROM Write: stores values from an analog input to the EEPROM.

Restore
May 21, 2008, at 09:22 PM by David A. Mellis -
Changed line 15 from:

« BlinkWithoutDelay : blinking an LED without using the delay() function.
to:

« Blink Without Delay: blinking an LED without using the delay() function.

Restore
April 29, 2008, at 06:55 PM by David A. Mellis - moving the resources to the links page.
Changed lines 2-5 from:

Arduino Tutorials

Here you will find a growing number of examples and tutorials for accomplishing specific tasks or interfacing to other
hardware and software with Arduino. For instructions on getting the board and environment up and running, see the Arduino

Getting Started.
to:
Arduino Examples

See the foundations page for in-depth description of core concepts of the Arduino hardware and software, and the links
page for other documentation.

Added line 15:

« BlinkWithoutDelay : blinking an LED without using the delay() function.
Changed lines 37-42 from:
Timing & Millis

« Blinking an LED without using the delay() function
« Stopwatch

(:if false:)

« TimeSinceStart:
(:ifend:)
to:
(:cell width=50%:)
Changed lines 41-42 from:

These are more complex examples for using particular electronic components or accomplishing specific tasks. The code is
included in the tutorial.

to:

These are more complex examples for using particular electronic components or accomplishing specific tasks. The code is
included on the page.

Deleted lines 43-44:
Added lines 49-51:

Timing & Millis
« Stopwatch

Deleted lines 75-125:

http://www.arduino.cc/en/Guide/HomePage

(:cell width=50%:)

Foundations

See the foundations page for explanations of the concepts involved in the Arduino hardware and software.

Tutorials

Tutorials created by the Arduino community. Hosted on the publicly-editable playground wiki.

Board Setup and Configuration: Information about the components and usage of Arduino hardware.

Interfacing With Hardware: Code, circuits, and instructions for using various electronic components with an Arduino board.

« Output

« Input

« Interaction

« Storage

« Communication

Interfacing with Software: how to get an Arduino board talking to software running on the computer (e.g. Processing, PD,
Flash, Max/MSP).

Code Library and Tutorials: Arduino functions for performing specific tasks and other programming tutorials.
Electronics Techniques: tutorials on soldering and other electronics resources.

Manuals, Curricula, and Other Resources

Arduino Booklet (pdf): an illustrated guide to the philosophy and practice of Arduino.

Learn electronics using Arduino: an introduction to programming, input / output, communication, etc. using Arduino. By
ladyada.

« Lesson 0: Pre-flight check...Is your Arduino and computer ready?

e Lesson 1: The "Hello World!" of electronics, a simple blinking light

« Lesson 2: Sketches, variables, procedures and hacking code

« Lesson 3: Breadboards, resistors and LEDs, schematics, and basic RGB color-mixing

e Lesson 4: The serial library and binary data - getting chatty with Arduino and crunching numbers

« Lesson 5: Buttons & switches, digital inputs, pull-up and pull-down resistors, if/if-else statements, debouncing and
your first contract product design.

Example labs from ITP

Spooky Arduino: Longer presentation-format documents introducing Arduino from a Halloween hacking class taught by
TodBot:

o class 1 (getting started)

e class 2 (input and sensors)

e class 3 (communication, servos, and pwm)

o class 4 (piezo sound & sensors, arduino+processing, stand-alone operation)

Bionic Arduino: another Arduino class from TodBot, this one focusing on physical sensing and making motion.
Examples from Tom Igoe
Examples from Jeff Gray

Restore
April 23, 2008, at 10:29 PM by David A. Mellis -
Changed line 6 from:

(:table width=90% border=0 cellpadding=5 cellspacing=0:)
to:
(:table width=100% border=0 cellpadding=5 cellspacing=0:)

Restore

April 22, 2008, at 05:59 PM by Paul Badger -
Changed line 39 from:

to:

(:if false:)

Changed line 41 from:
to:

(:ifend:)

Restore
April 22, 2008, at 05:56 PM by Paul Badger -
Added lines 40-41:

« TimeSinceStart:

Restore

April 18, 2008, at 07:22 AM by Paul Badger -
Added lines 36-39:

Timing & Millis

« Blinking an LED without using the delay() function
« Stopwatch

Changed line 46 from:

« Blinking an LED without using the delay() function

to:

Restore

April 08, 2008, at 08:23 PM by David A. Mellis -
Changed line 43 from:

« * TwoSwitchesOnePin: Read two switches with one 1/0 pin

to:

« TwoSwitchesOnePin: Read two switches with one 1/0 pin

Restore

April 08, 2008, at 08:22 PM by David A. Mellis - moving TwoSwitchesOnePin to "other examples" since it's not (yet) in the
distribution.

Changed lines 18-19 from:

« TwoSwitchesOnePin: Read two switches with one 1/0 pin

to:
Added line 43:

« * TwoSwitchesOnePin: Read two switches with one 1/0 pin

Restore

April 08, 2008, at 07:41 PM by Paul Badger -
Changed lines 18-19 from:

to:

« TwoSwitchesOnePin: Read two switches with one 1/0 pin

Restore
March 09, 2008, at 07:20 PM by David A. Mellis -
Changed lines 73-78 from:

« Foundations has moved here

« Bootloader: A small program pre-loaded on the Arduino board to allow uploading sketches.
to:
See the foundations page for explanations of the concepts involved in the Arduino hardware and software.

Restore
March 07, 2008, at 09:26 PM by Paul Badger -
Changed lines 73-75 from:

to:

« Foundations has moved here

Restore
March 07, 2008, at 09:24 PM by Paul Badger -
Changed lines 74-107 from:

e« Memory: The various types of memory available on the Arduino board.
» Digital Pins: How the pins work and what it means for them to be configured as inputs or outputs.
« Analog Input Pins: Details about the analog-to-digital conversion and other uses of the pins.
« Foundations
(:if false:)

« PWM (Pulse-Width Modulation): The method used by analogWrite() to simulate an analog output with digital pins.

« Communication?: An overview of the various ways in which an Arduino board can communicate with other devices
(serial, 12C, SPI, Midi, etc.)

« Serial Communication?: How to send serial data from an Arduino board to a computer or other device (including via
the USB connection).

« Interrupts?: Code that interrupts other code under certain conditions.

« Numbers?: The various types of numbers available and how to use them.

« Variables: How to define and use variables.

e Arrays?: How to store multiple values of the same type.

» Pointers?:

« Functions?: How to write and call functions.

« Optimization?: What to do when your program runs too slowly.

« Debugging?: Figuring out what's wrong with your hardware or software and how to fix it.
(:ifend:)

to:

Restore

March 07, 2008, at 09:09 PM by Paul Badger -
Added lines 80-81:

« Foundations

Restore
February 15, 2008, at 06:00 PM by David A. Mellis -
Changed lines 72-73 from:

Tutorials

to:

Foundations

Changed lines 108-109 from:
More Tutorials

to:

Tutorials

Restore
February 13, 2008, at 10:42 PM by Paul Badger -
Changed lines 4-5 from:

Here you will find a growing number of examples and tutorials for accomplishing specific tasks or interfacing to other
hardware and software with Arduino. For instructions on getting the board and environment up and running, see the Arduino

guide.

http://www.arduino.cc/en/Guide/HomePage

to:

Here you will find a growing number of examples and tutorials for accomplishing specific tasks or interfacing to other
hardware and software with Arduino. For instructions on getting the board and environment up and running, see the Arduino

Getting Started.

Restore

February 13, 2008, at 10:06 PM by David A. Mellis -
Restore

February 13, 2008, at 09:58 PM by David A. Mellis -
Added lines 100-103:

« Optimization?: What to do when your program runs too slowly.
« Debugging?: Figuring out what's wrong with your hardware or software and how to fix it.

Restore
February 13, 2008, at 09:41 PM by David A. Mellis -
Added lines 90-99:

« Numbers?: The various types of numbers available and how to use them.
« Variables: How to define and use variables.

e Arrays?: How to store multiple values of the same type.

« Pointers?:

« Functions?: How to write and call functions.

Restore
February 13, 2008, at 09:38 PM by David A. Mellis -
Changed lines 86-87 from:

« Serial Communication?: How to send serial data from an Arduino board to a computer or other device.

to:
« Serial Communication?: How to send serial data from an Arduino board to a computer or other device (including via
the USB connection).
e Interrupts?: Code that interrupts other code under certain conditions.
Restore

February 13, 2008, at 09:36 PM by David A. Mellis -
Added lines 80-81:

(:if false:)
Added lines 84-89:

« Communication?: An overview of the various ways in which an Arduino board can communicate with other devices
(serial, 12C, SPI, Midi, etc.)

« Serial Communication?: How to send serial data from an Arduino board to a computer or other device.

(zifend:)

Restore
February 13, 2008, at 09:31 PM by David A. Mellis -
Changed lines 80-81 from:

« PWM (Pulse-Width Modulation): The method used by analogWrite() to simulate an analog output with digital pins.
to:

« PWM (Pulse-Width Modulation): The method used by analogWrite() to simulate an analog output with digital pins.

Restore
February 13, 2008, at 09:30 PM by David A. Mellis -
Added lines 80-81:

« PWM (Pulse-Width Modulation): The method used by analogWrite() to simulate an analog output with digital pins.

http://www.arduino.cc/en/Guide/HomePage

Restore
February 13, 2008, at 09:22 PM by David A. Mellis -
Added lines 80-81:

« Bootloader: A small program pre-loaded on the Arduino board to allow uploading sketches.

Restore
February 13, 2008, at 09:12 PM by David A. Mellis -
Added lines 74-81:

e« Memory: The various types of memory available on the Arduino board.

« Digital Pins: How the pins work and what it means for them to be configured as inputs or outputs.

« Analog Input Pins: Details about the analog-to-digital conversion and other uses of the pins.
More Tutorials

Restore
January 11, 2008, at 11:31 AM by David A. Mellis - linking to board setup and configuration on the playground.
Added lines 76-77:

Board Setup and Configuration: Information about the components and usage of Arduino hardware.

Restore

December 19, 2007, at 11:54 PM by David A. Mellis - adding links to other pages: the tutorial parts of the playground,
ladyada's tutorials, todbot, etc.

Changed lines 36-42 from:

(:cell width=50%:)
Tutorials

These are more complex tutorials for using particular electronic components or accomplishing specific tasks. The code is
included in the tutorial.

to:
Other Examples

These are more complex examples for using particular electronic components or accomplishing specific tasks. The code is
included in the tutorial.

Changed lines 71-78 from:
Other Arduino Tutorials

o Tutorials from the Arduino playground
« Example labs from ITP

e Spooky Arduino and more from Todbot
« Examples from Tom Igoe

« Examples from Jeff Gray

to:

(:cell width=50%:)

Tutorials

Tutorials created by the Arduino community. Hosted on the publicly-editable playground wiki.

Interfacing With Hardware: Code, circuits, and instructions for using various electronic components with an Arduino board.

« Output

e Input

« Interaction

« Storage

« Communication

Interfacing with Software: how to get an Arduino board talking to software running on the computer (e.g. Processing, PD,
Flash, Max/MSP).

Code Library and Tutorials: Arduino functions for performing specific tasks and other programming tutorials.
Electronics Techniques: tutorials on soldering and other electronics resources.

Manuals, Curricula, and Other Resources

Arduino Booklet (pdf): an illustrated guide to the philosophy and practice of Arduino.

Learn electronics using Arduino: an introduction to programming, input / output, communication, etc. using Arduino. By
ladyada.

« Lesson 0: Pre-flight check...Is your Arduino and computer ready?

e Lesson 1: The "Hello World!" of electronics, a simple blinking light

« Lesson 2: Sketches, variables, procedures and hacking code

« Lesson 3: Breadboards, resistors and LEDs, schematics, and basic RGB color-mixing

e Lesson 4: The serial library and binary data - getting chatty with Arduino and crunching numbers

« Lesson 5: Buttons & switches, digital inputs, pull-up and pull-down resistors, if/if-else statements, debouncing and
your first contract product design.

Example labs from ITP

Spooky Arduino: Longer presentation-format documents introducing Arduino from a Halloween hacking class taught by
TodBot:

e class 1 (getting started)

e class 2 (input and sensors)

e class 3 (communication, servos, and pwm)

o class 4 (piezo sound & sensors, arduino+processing, stand-alone operation)

Bionic Arduino: another Arduino class from TodBot, this one focusing on physical sensing and making motion.
Examples from Tom Igoe
Examples from Jeff Gray

Restore
December 13, 2007, at 11:08 PM by David A. Mellis - adding debounce example.
Added line 16:

« Debounce: read a pushbutton, filtering noise.

Restore

August 28, 2007, at 11:15 PM by Tom Igoe -
Changed lines 71-72 from:

to:

e X10 output control devices over AC powerlines using X10

Restore
June 15, 2007, at 05:04 PM by David A. Mellis - adding link to Processing (for the communication examples)
Added lines 27-28:

These examples include code that allows the Arduino to talk to Processing sketches running on the computer. For more
information or to download Processing, see processing.org.

Restore
June 12, 2007, at 08:57 AM by David A. Mellis - removing link to obsolete joystick example.
Deleted line 43:

« Interfacing a Joystick

Restore
June 11, 2007, at 11:14 PM by David A. Mellis -
Changed lines 10-11 from:

Simple programs that demonstrate the use of the Arduino board. These are included with the Arduino environment; to open
them, click the Open button on the toolbar and look in the examples folder. (If you're looking for an older example, check
the Arduino 0007 tutorials page.

to:

Simple programs that demonstrate the use of the Arduino board. These are included with the Arduino environment; to open

them, click the Open button on the toolbar and look in the examples folder. (If you're looking for an older example, check
the Arduino 0007 tutorials page.)

Restore
June 11, 2007, at 11:13 PM by David A. Mellis -
Changed lines 10-11 from:

Simple programs that demonstrate the use of the Arduino board. These are included with the Arduino environment; to open
them, click the Open button on the toolbar and look in the examples folder.

to:

Simple programs that demonstrate the use of the Arduino board. These are included with the Arduino environment; to open
them, click the Open button on the toolbar and look in the examples folder. (If you're looking for an older example, check
the Arduino 0007 tutorials page.

Restore
June 11, 2007, at 11:10 PM by David A. Mellis - updating to 0008 examples
Changed lines 10-11 from:

Digital Output

» Blinking LED

to:

Simple programs that demonstrate the use of the Arduino board. These are included with the Arduino environment; to open
them, click the Open button on the toolbar and look in the examples folder.

Digital 170

e Blink: turn an LED on and off.
« Button: use a pushbutton to control an LED.
e Loop: controlling multiple LEDs with a loop and an array.

Analog 170

« Analog Input: use a potentiometer to control the blinking of an LED.
« Fading: uses an analog output (PWM pin) to fade an LED.

« Knock: detect knocks with a piezo element.

« Smoothing: smooth multiple readings of an analog input.

Communication

« ASCII Table: demonstrates Arduino's advanced serial output functions.

« Dimmer: move the mouse to change the brightness of an LED.

e Graph: sending data to the computer and graphing it in Processing.

e Physical Pixel: turning on and off an LED by sending data from Processing.

« Virtual Color Mixer: sending multiple variables from Arduino to the computer and reading them in Processing.

(:cell width=50%:)
Tutorials

These are more complex tutorials for using particular electronic components or accomplishing specific tasks. The code is
included in the tutorial.

Miscellaneous

Deleted lines 42-51:

« Simple Dimming 3 LEDs with Pulse-Width Modulation (PWM)
« More complex dimming/color crossfader
« Knight Rider example

« Shooting star
« PWM all of the digital pins in a sinewave pattern

Digital Input

« Digital Input and Output (from ITP physcomp labs)

+ Read a Pushbutton
« Using a pushbutton as a switch

Deleted lines 43-45:
Analog Input

« Read a Potentiometer

Deleted lines 45-46:

« Read a Piezo Sensor
« 3 LED cross-fades with a potentiometer

Changed lines 52-53 from:
« Use two Arduino pins as a capacitive sensor

to:
Deleted line 54:

« More sound ideas
Added line 64:

« Build your own DMX Master device

Changed lines 70-72 from:

« Multiple digital inputs with a CD4021 Shift Register

Other Arduino Examples
to:
Other Arduino Tutorials
o Tutorials from the Arduino playground
Added line 75:
e Spooky Arduino and more from Todbot
Deleted lines 78-105:
(:cell width=50%:)
Interfacing with Other Software

e Introduction to Serial Communication (from ITP physcomp labs)
e Arduino + Flash

e Arduino + Processing
e Arduino + PD

e Arduino + MaxMSP

e Arduino + VVVV

e Arduino + Director

e Arduino + Ruby

e Arduino + C

Tech Notes (from the forums or playground)

« Software serial (serial on pins besides 0 and 1)
e L297 motor driver

« Hex inverter

« Analog multiplexer

« Power supplies

« The components on the Arduino board
e Arduino build process

 AVRISP mkll on the Mac

« Non-volatile memory (EEPROM)

« Bluetooth

« Zigbee

« LED as light sensor (en Francais)
« Arduino and the Asuro robot
« Using Arduino from the command line

Restore

May 11, 2007, at 06:06 AM by Paul Badger -
Changed lines 17-18 from:

to:

« PWM all of the digital pins in a sinewave pattern

Restore
May 10, 2007, at 07:07 PM by Paul Badger -
Changed lines 36-37 from:

o http://www.arduino.cc/cgi-bin/yabb2/YaBB.pl?num=1171076259 |Use a couple of Arduino pins as a capacitive
sensor]]

to:
« Use two Arduino pins as a capacitive sensor

Restore
May 10, 2007, at 07:05 PM by Paul Badger -
Changed lines 36-37 from:

o http://www.arduino.cc/cgi-bin/yabb2/YaBB.pl?num=1171076259 Use a couple of Arduino pins as a capacitive sensor
to:

o http://www.arduino.cc/cgi-bin/yabb2/YaBB.pl?num=1171076259 |Use a couple of Arduino pins as a capacitive
sensor]]

Restore

May 10, 2007, at 07:04 PM by Paul Badger -
Changed lines 36-37 from:

to:

o http://www.arduino.cc/cgi-bin/yabb2/YaBB.pl?num=1171076259 Use a couple of Arduino pins as a capacitive sensor

Restore
May 10, 2007, at 06:59 PM by Paul Badger -
Added line 39:

« More sound ideas

Restore
April 24, 2007, at 03:40 PM by Clay Shirky -
Changed lines 13-14 from:

« Dimming 3 LEDs with Pulse-Width Modulation (PWM)

to:
« Simple Dimming 3 LEDs with Pulse-Width Modulation (PWM)
« More complex dimming/color crossfader

Restore

February 08, 2007, at 12:02 PM by Carlyn Maw -
Changed lines 52-53 from:
to:

« Multiple digital inputs with a CD4021 Shift Register

Restore
February 06, 2007, at 02:52 PM by Carlyn Maw -
Changed lines 52-54 from:

« Multiple digital ins with a CD4021 Shift Register

to:
Restore

February 06, 2007, at 02:51 PM by Carlyn Maw -
Changed lines 52-53 from:
to:

« Multiple digital ins with a CD4021 Shift Register

Restore
January 30, 2007, at 03:37 PM by David A. Mellis -
Deleted line 46:

« Build your own DMX Master device

Restore
December 25, 2006, at 11:57 PM by David A. Mellis -
Added line 20:

« Using a pushbutton as a switch

Restore

December 07, 2006, at 06:04 AM by David A. Mellis - adding link to todbot's C serial port code.
Changed lines 69-70 from:

to:

e Arduino + C

Restore
December 02, 2006, at 10:43 AM by David A. Mellis
Added line 1:

(:title Tutorials:)

Restore
November 21, 2006, at 10:13 AM by David A. Mellis
Added line 64:

e Arduino + MaxMSP

Changed lines 67-68 from:
to:

e Arduino + Ruby

Restore
November 18, 2006, at 02:42 AM by David A. Mellis -
Changed lines 20-21 from:

« Controlling an LED circle with a joystick

to:
Added line 24:

« Controlling an LED circle with a joystick

Restore

November 09, 2006, at 03:10 PM by Carlyn Maw -
Changed lines 50-51 from:

to:

« Multiple digital outs with a 595 Shift Register

Restore
November 06, 2006, at 10:49 AM by David A. Mellis -
Changed lines 37-38 from:

« MIDI Output (from ITP physcomp labs)
to:
« MIDI Output (from ITP physcomp labs) and from Spooky Arduino

Restore
November 04, 2006, at 12:25 PM by David A. Mellis -
Deleted line 53:

Deleted line 54:

Restore

November 04, 2006, at 12:24 PM by David A. Mellis -
Added lines 51-58:

Other Arduino Examples
« Example labs from ITP
« Examples from Tom Igoe
« Examples from Jeff Gray
Deleted lines 83-89:
Other Arduino Examples
« Example labs from ITP
« Examples from Tom lgoe.
« Examples from Jeff Gray.

Restore
November 04, 2006, at 12:24 PM by David A. Mellis -
Changed lines 50-51 from:

Example labs from ITP

to:
Changed lines 77-78 from:

Also, see the examples from Tom Igoe and those from Jeff Gray.

to:
« Example labs from ITP
« Examples from Tom Igoe.
« Examples from Jeff Gray.
Restore

November 04, 2006, at 12:23 PM by David A. Mellis -
Changed line 77 from:

Other Arduino Sites

to:

Other Arduino Examples
Deleted lines 79-81:

Do you need extra help?

Is there a sensor you would like to see characterized for Arduino, or is there something you would like to see published in
this site? Refer to the forum for further help.

Restore
November 04, 2006, at 10:38 AM by David A. Mellis -
Changed lines 3-4 from:

Here you will find a growing number of examples and tutorials for accomplishing specific tasks or interfacing to other
hardware and software with Arduino. For instructions on getting the board and environment up and running, see the Arduino

guide?.
to:

Here you will find a growing number of examples and tutorials for accomplishing specific tasks or interfacing to other
hardware and software with Arduino. For instructions on getting the board and environment up and running, see the Arduino

guide.

http://www.arduino.cc/en/Guide/Homepage?action=edit
http://www.arduino.cc/en/Guide/Homepage?action=edit
http://www.arduino.cc/en/Guide/HomePage

Restore
November 04, 2006, at 10:37 AM by David A. Mellis - lots of content moved to the new guide.
Deleted lines 52-67:

The Arduino board

This guide to the Arduino board explains the functions of the various parts of the board.

The Arduino environment

This guide to the Arduino IDE (integrated development environment) explains the functions of the various buttons and
menus.

The libraries page explains how to use libraries in your sketches and how to make your own.
Video Lectures by Tom Igoe

Watch Tom introduce Arduino. Thanks to Pollie Barden for the great videos.

Course Guides

todbot has some very detailed, illustrated tutorials from his Spooky Projects course: class 1 (getting started), class 2 (input
and sensors), class 3 (communication, servos, and pwm), class 4 (piezo sound & sensors, arduino+processing, stand-alone
operation)

Deleted lines 82-87:

External Resources

Instant Soup is an introduction to electronics through a series of beautifully-documented fun projects.
Make magazine has some great links in its electronics archive.

hack a day has links to interesting hacks and how-to articles on various topics.

Restore
November 04, 2006, at 10:17 AM by David A. Mellis -
Changed lines 3-4 from:

Here you will find a growing number of examples and tutorials for accomplishing specific tasks or interfacing to other
hardware and software with Arduino. For instructions on getting the board and environment up and running, see the Howto.

to:

Here you will find a growing number of examples and tutorials for accomplishing specific tasks or interfacing to other
hardware and software with Arduino. For instructions on getting the board and environment up and running, see the Arduino

guide?.

Restore
November 01, 2006, at 06:54 PM by Carlyn Maw -
Deleted line 49:

« Extend your digital outs with 74HC595 shift registers

Restore
November 01, 2006, at 06:06 PM by Carlyn Maw -
Added line 50:

« Extend your digital outs with 74HC595 shift registers

Restore
October 31, 2006, at 10:47 AM by Tod E. Kurt -
Changed lines 67-68 from:

todbot has some very detailed, illustrated tutorials from his Spooky Projects course: class 1 (getting started), class 2 (input
and sensors), class 3 (communication, servos, and pwm).

to:

todbot has some very detailed, illustrated tutorials from his Spooky Projects course: class 1 (getting started), class 2 (input
and sensors), class 3 (communication, servos, and pwm), class 4 (piezo sound & sensors, arduino+processing, stand-alone
operation)

http://www.arduino.cc/en/Main/Environment
http://www.arduino.cc/en/Main/Libraries
http://www.arduino.cc/en/Main/Howto
http://www.arduino.cc/en/Guide/Homepage?action=edit
http://www.arduino.cc/en/Guide/Homepage?action=edit

Restore
October 22, 2006, at 12:52 PM by David A. Mellis -
Changed lines 1-4 from:

Learning to use Arduino

Here you will find a growing number of step by step guides on how to learn the basics of arduino and the things you can do
with it. For instructions on getting the board and IDE up and running, see the Howto.

to:

Arduino Tutorials

Here you will find a growing number of examples and tutorials for accomplishing specific tasks or interfacing to other
hardware and software with Arduino. For instructions on getting the board and environment up and running, see the Howto.

Restore
October 22, 2006, at 12:51 PM by David A. Mellis -
Changed lines 67-68 from:

todbot has some very detailed, illustrated tutorials from his Spooky Projects course: class 1 (getting started), class 2 (input
and sensors).

to:

todbot has some very detailed, illustrated tutorials from his Spooky Projects course: class 1 (getting started), class 2 (input
and sensors), class 3 (communication, servos, and pwm).

Restore
October 21, 2006, at 04:25 PM by David A. Mellis - adding links to todbot's class notes.
Added lines 66-68:

Course Guides

todbot has some very detailed, illustrated tutorials from his Spooky Projects course: class 1 (getting started), class 2 (input
and sensors).

Restore
October 08, 2006, at 05:46 PM by David A. Mellis -
Changed lines 59-62 from:

This guide to the Arduino IDE? (integrated development environment) explains the functions of the various buttons and
menus.

The libraries? page explains how to use libraries in your sketches and how to make your own.
to:

This guide to the Arduino IDE (integrated development environment) explains the functions of the various buttons and
menus.

The libraries page explains how to use libraries in your sketches and how to make your own.

Restore
October 08, 2006, at 05:45 PM by David A. Mellis -
Changed lines 3-4 from:

Here you will find a growing number of step by step guides on how to learn the basics of arduino and the things you can do
with it. For instructions on getting the board and IDE up and running, see the Howto?.

to:

Here you will find a growing number of step by step guides on how to learn the basics of arduino and the things you can do
with it. For instructions on getting the board and IDE up and running, see the Howto.

Restore
October 08, 2006, at 05:38 PM by David A. Mellis -
Added lines 1-102:

Learning to use Arduino

Here you will find a growing number of step by step guides on how to learn the basics of arduino and the things you can do

http://www.arduino.cc/en/Main/Howto
http://www.arduino.cc/en/Main/Howto
http://www.arduino.cc/en/Main/Environment
http://www.arduino.cc/en/Main/Libraries
http://www.arduino.cc/en/Main/Howto

with it. For instructions on getting the board and IDE up and running, see the Howto?.
(:table width=90% border=0 cellpadding=5 cellspacing=0:) (:cell width=50%:)
Examples

Digital Output

« Blinking LED

« Blinking an LED without using the delay() function

« Dimming 3 LEDs with Pulse-Width Modulation (PWM)
« Knight Rider example

- Shooting star

Digital Input

« Digital Input and Output (from ITP physcomp labs)
« Read a Pushbutton

« Read a Tilt Sensor

« Controlling an LED circle with a joystick

Analog Input

- Read a Potentiometer

« Interfacing a Joystick

« Read a Piezo Sensor

« 3 LED cross-fades with a potentiometer

e« 3 LED color mixer with 3 potentiometers

Complex Sensors

+« Read an Accelerometer
« Read an Ultrasonic Range Finder (ultrasound sensor)
« Reading the gprox qt401 linear touch sensor

« Play Melodies with a Piezo Speaker
« Play Tones from the Serial Connection
e MIDI Output (from ITP physcomp labs)

Interfacing w/ Hardware

« Multiply the Amount of Outputs with an LED Driver
« Interfacing an LCD display with 8 bits
o LCD interface library
« Driving a DC Motor with an L293 (from ITP physcomp labs).
« Driving a Unipolar Stepper Motor
« Build your own DMX Master device
« Implement a software serial connection
o RS-232 computer interface
« Interface with a serial EEPROM using SPI
« Control a digital potentiometer using SPI

Example labs from ITP
(:cell width=50%:)
The Arduino board

This guide to the Arduino board explains the functions of the various parts of the board.

The Arduino environment

This guide to the Arduino IDE? (integrated development environment) explains the functions of the various buttons and
menus.

The libraries? page explains how to use libraries in your sketches and how to make your own.

http://www.arduino.cc/en/Tutotial/KeyboardSerial

Video Lectures by Tom Igoe
Watch Tom introduce Arduino. Thanks to Pollie Barden for the great videos.
Interfacing with Other Software

e Introduction to Serial Communication (from ITP physcomp labs)
e Arduino + Flash

e Arduino + Processing
e Arduino + PD

e Arduino + VVVV

e Arduino + Director

Tech Notes (from the forums or playground)

« Software serial (serial on pins besides 0 and 1)
e L297 motor driver

« Hex inverter

« Analog multiplexer

« Power supplies

¢ The components on the Arduino board
e Arduino build process

« AVRISP mkll on the Mac

« Non-volatile memory (EEPROM)

« Bluetooth

* Zigbee

« LED as light sensor (en Francais)

e Arduino and the Asuro robot

e Using Arduino from the command line

Other Arduino Sites
Also, see the examples from Tom Igoe and those from Jeff Gray.
Do you need extra help?

Is there a sensor you would like to see characterized for Arduino, or is there something you would like to see published in
this site? Refer to the forum for further help.

External Resources
Instant Soup is an introduction to electronics through a series of beautifully-documented fun projects.
Make magazine has some great links in its electronics archive.

hack a day has links to interesting hacks and how-to articles on various topics. (:tableend:)

Restore

http://www.arduino.cc/en/Site/AllRecentChanges

Arduino : Tutorial / Tutorials

Learning Examples | Eoundations | Hacking | Links
Examples

See the foundations page for in-depth description of core concepts of the Arduino hardware and software; the
hacking page for information on extending and modifying the Arduino hardware and software; and the links page

for other documentation.

Examples

Simple programs that demonstrate the use of the
Arduino board. These are included with the Arduino
environment; to open them, click the Open button on
the toolbar and look in the examples folder. (If you're
looking for an older example, check the Arduino 0007

tutorials page.)
Digital 170

e Blink: turn an LED on and off.

¢ Blink Without Delay: blinking an LED without
using the delay() function.

e Button: use a pushbutton to control an LED.

e Debounce: read a pushbutton, filtering noise.

e Loop: controlling multiple LEDs with a loop and an

array.
Analog 1/0

e Analog Input: use a potentiometer to control the
blinking of an LED.

e Fading: uses an analog output (PWM pin) to fade
an LED.

* Knock: detect knocks with a piezo element.

 Smoothing: smooth multiple readings of an analog

input.

Communication

These examples include code that allows the Arduino to

talk to Processing sketches running on the computer.
For more information or to download Processing, see

processing.org.

e ASCII Table: demonstrates Arduino's advanced
serial output functions.

¢ Dimmer: move the mouse to change the
brightness of an LED.

¢ Graph: sending data to the computer and
graphing it in Processing.

¢ Physical Pixel: turning on and off an LED by
sending data from Processing.

« Virtual Color Mixer: sending multiple variables
from Arduino to the computer and reading them
in Processing.

Other Examples

These are more complex examples for using particular
electronic components or accomplishing specific tasks.
The code is included on the page.

Miscellaneous

¢ TwoSwitchesOnePin: Read two switches with one
1/0 pin

e Read a Tilt Sensor

e Controlling an LED circle with a joystick

e 3 LED color mixer with 3 potentiometers

Timing & Millis
e Stopwatch
Complex Sensors

¢ Read an ADXL3xx accelerometer
e Read an Accelerometer

e Read an Ultrasonic Range Finder (ultrasound
sensaor)
e Reading the gprox qt401 linear touch sensor

Sound

e Play Melodies with a Piezo Speaker

e Play Tones from the Serial Connection

e MIDI Output (from ITP_physcomp labs) and from
Spooky Arduino

Interfacing w/ Hardware

e Multiply the Amount of Outputs with an LED
Driver

e Interfacing an LCD display with 8 bits
o LCD interface librar
e Driving a DC Motor with an 1293 (from ITP
physcomp labs).
e Driving a Unipolar Stepper Motor
e Build your own DMX Master device
e Implement a software serial connection
o RS-232 computer interface

e Interface with a serial EEPROM using SPI

http://www.arduino.cc/en
http://www.arduino.cc/en/Tutorial
http://www.arduino.cc/en/Hacking/HomePage
http://www.arduino.cc/en/Hacking/HomePage
http://processing.org/
http://www.arduino.cc/en/Tutotial/KeyboardSerial
http://itp.nyu.edu/physcomp/Labs/MIDIOutput
http://itp.nyu.edu/physcomp/Labs/Labs
http://todbot.com/blog/2006/10/29/spooky-arduino-projects-4-and-musical-arduino/
http://todbot.com/blog/2006/10/29/spooky-arduino-projects-4-and-musical-arduino/
http://itp.nyu.edu/physcomp/Labs/DCMotorControl
http://itp.nyu.edu/physcomp/Labs/Labs
http://itp.nyu.edu/physcomp/Labs/Labs

e Control a digital potentiometer using SPI

. e Multiple digital outs with a 595 Shift Register
EEPROM Library e X10 output control devices over AC powerlines

using X10
e EEPROM Clear: clear the bytes in the EEPROM. g

e EEPROM Read: read the EEPROM and send its
values to the computer.

e EEPROM Write: stores values from an analog input
to the EEPROM.

Stepper Library

* Motor Knob: control a stepper motor with a
potentiometer.

(Printable View of http://www.arduino.cc/en/Tutorial/HomePage)

Arduino

Buy | Download | Getting Started | Learning | Reference | Hardware | FAQ Blog » | Forum » | Playground »

Learning Examples | Foundations | Hacking | Links

Foundations Page Discussion

The Foundations page is intended to supplement the material in the examples and reference, providing more in-depth
explanations of the underlying functionality and principles involved.

These pages are cross-linked with the applicable language reference, example, and other pages, providing a single source for
people looking for a longer discussion of a particular topic.

This section is a work in progress, and there are many topics yet to be covered. Here's a rough list of ideas:

« PROGRAMMING

o conditionals

o loops

o functions
numbers and arithmetic
bits and bytes
characters and encodings
arrays
strings

« ELECTRONICS
o Vvoltage, current, and resistance
o resistive sensors
o capacitors
o transistors
o power
o noise

« COMMUNICATION
o serial communication
o i2c (aka twi)
o bluetooth

e MICROCONTROLLER
o reset
o pins and ports
o interrupts

If you see anything in the list that interests you, feel free to take a shot at writing it up. Don't worry if it's not finished or
polished, we can always edit and improve it. You can post works-in-progress to the playground and mention them on the
forum. Also, be sure to let us know if you think there's anything that we've forgotten, or if you have other suggestions.

Foundations Page

http://www.arduino.cc/
http://www.arduino.cc/en/Main/Buy
http://www.arduino.cc/en/Main/Software
http://www.arduino.cc/en/Guide/HomePage
http://www.arduino.cc/en/Reference/HomePage
http://www.arduino.cc/en/Main/Hardware
http://www.arduino.cc/en/Main/FAQ
http://www.arduino.cc/blog/
http://www.arduino.cc/cgi-bin/yabb2/YaBB.pl
http://www.arduino.cc/playground/
http://www.arduino.cc/en/Hacking/HomePage
http://www.arduino.cc/playground/
http://www.arduino.cc/cgi-bin/yabb2/YaBB.pl?board=swbugs
http://www.arduino.cc/en/Tutorial/FoundationPageDiscussion?action=edit
http://www.arduino.cc/en/Tutorial/FoundationPageDiscussion?action=diff
http://www.arduino.cc/en/Tutorial/FoundationPageDiscussion?action=print
http://www.arduino.cc/en/Site/AllRecentChanges

Arduino I |

Buy | Download | Getting Started | Learning | Reference | Hardware | FAQ Blog » | Forum » | Playground »

Learning Examples | Foundations | Hacking | Links

First Sketch

In the getting started guide (Windows, Mac OS X, Linux), you uploaded a sketch that blinks an LED. In this tutorial, you'll
learn how each part of that sketch works.

Sketch
A sketch is the name that Arduino uses for a program. It's the unit of code that is uploaded to and run on an Arduino board.
Comments

The first few lines of the Blink sketch are a comment:

* Blink

* The basic Arduino exanple. Turns on an LED on for one second,
* then off for one second, and so on... W use pin 13 because,
* depending on your Arduino board, it has either a built-in LED
* or a built-in resistor so that you need only an LED.

* http://ww. ardui no.cc/en/ Tutorial/Blink
*
/

Everything between the /* and */ is ignored by the Arduino when it runs the sketch (the * at the start of each line is only
there to make the comment look pretty, and isn't required). It's there for people reading the code: to explain what the
program does, how it works, or why it's written the way it is. It's a good practice to comment your sketches, and to keep
the comments up-to-date when you modify the code. This helps other people to learn from or modify your code.

There's another style for short, single-line comments. These start with // and continue to the end of the line. For example, in
the line:

int ledPin = 13; /1 LED connected to digital pin 13

the message "LED connected to digital pin 13" is a comment.
Variables

A variable is a place for storing a piece of data. It has a name, a type, and a value. For example, the line from the Blink
sketch above declares a variable with the name | edPi n, the type i nt, and an initial value of 13. It's being used to indicate
which Arduino pin the LED is connected to. Every time the name | edPi n appears in the code, its value will be retrieved. In
this case, the person writing the program could have chosen not to bother creating the | edPi n variable and instead have
simply written 13 everywhere they needed to specify a pin number. The advantage of using a variable is that it's easier to
move the LED to a different pin: you only need to edit the one line that assigns the initial value to the variable.

Often, however, the value of a variable will change while the sketch runs. For example, you could store the value read from
an input into a variable. There's more information in the Variables tutorial.

Functions

A function (otherwise known as a procedure or sub-routine) is a named piece of code that can be used from elsewhere in a
sketch. For example, here's the definition of the set up() function from the Blink example:

voi d setup()
{

http://www.arduino.cc/
http://www.arduino.cc/en/Main/Buy
http://www.arduino.cc/en/Main/Software
http://www.arduino.cc/en/Guide/HomePage
http://www.arduino.cc/en/Reference/HomePage
http://www.arduino.cc/en/Main/Hardware
http://www.arduino.cc/en/Main/FAQ
http://www.arduino.cc/blog/
http://www.arduino.cc/cgi-bin/yabb2/YaBB.pl
http://www.arduino.cc/playground/
http://www.arduino.cc/en/Hacking/HomePage
http://www.arduino.cc/en/Guide/Windows
http://www.arduino.cc/en/Guide/MacOSX
http://www.arduino.cc/playground/Learning/Linux

pi nMbde(| edPi n, QOUTPUT); /'l sets the digital pin as output

The first line provides information about the function, like its name, "setup". The text before and after the name specify its
return type and parameters: these will be explained later. The code between the { and } is called the body of the function:
what the function does.

You can call a function that's already been defined (either in your sketch or as part of the Arduino language). For example,
the line pi nMbde(l edPi n, OUTPUT); calls the pi nMbde() function, passing it two parameters: | edPi n and OUTPUT. These
parameters are used by the pi nMbde() function to decide which pin and mode to set.

pinMode(), digitalWrite(), and delay()

The pi nMode() function configures a pin as either an input or an output. To use it, you pass it the number of the pin to
configure and the constant INPUT or OUTPUT. When configured as an input, a pin can detect the state of a sensor like a
pushbutton; this is discussed in a later tutorial?. As an output, it can drive an actuator like an LED.

The digital Wite() functions outputs a value on a pin. For example, the line:

digital Wite(ledPin, H GH);

set the | edPi n (pin 13) to HIGH, or 5 volts. Writing a LOW to pin connects it to ground, or O volts.

The del ay() causes the Arduino to wait for the specified number of milliseconds before continuing on to the next line. There
are 1000 milliseconds in a second, so the line:

del ay(1000);

creates a delay of one second.
setup() and loop()

There are two special functions that are a part of every Arduino sketch: setup() and I oop() . The setup() is called once,
when the sketch starts. It's a good place to do setup tasks like setting pin modes or initializing libraries. The | oop() function
is called over and over and is heart of most sketches. You need to include both functions in your sketch, even if you don't
need them for anything.

Exercises
1. Change the code so that the LED is on for 100 milliseconds and off for 1000.

2. Change the code so that the LED turns on when the sketch starts and stays on.

See Also

« setup()

« loop()

« pinMode()

- digitalWrite()
- delay()

http://www.arduino.cc/en/Reference/HomePage
http://www.arduino.cc/en/Tutorial/DigitalInput?action=edit
http://www.arduino.cc/en/Tutorial/DigitalInput?action=edit
http://www.arduino.cc/en/Reference/Setup
http://www.arduino.cc/en/Reference/Loop
http://www.arduino.cc/en/Reference/PinMode
http://www.arduino.cc/en/Reference/DigitalWrite
http://www.arduino.cc/en/Reference/Delay
http://www.arduino.cc/en/Tutorial/Sketch?action=edit
http://www.arduino.cc/en/Tutorial/Sketch?action=diff
http://www.arduino.cc/en/Tutorial/Sketch?action=print
http://www.arduino.cc/en/Site/AllRecentChanges

Arduino

Buy | Download | Getting Started | Learning | Reference | Hardware | FAQ Blog » | Forum » | Playground »

Learning Examples | Foundations | Hacking | Links

Pins
Pins Configured as INPUT

Arduino (Atmega) pins default to inputs, so they don't need to be explicitly declared as inputs with pinMode(). Pins configured
as inputs are said to be in a high-impedance state. One way of explaining this is that input pins make extremely small
demands on the circuit that they are sampling, say equivalent to a series resistor of 100 Megohms in front of the pin. This
means that it takes very little current to move the input pin from one state to another, and can make the pins useful for
such tasks as implementing a capacitive touch sensor.

This also means however that input pins with nothing connected to them, or with wires connected to them that are not
connected to other circuits, will report seemingly random changes in pin state, picking up electrical noise from the
environment, or capacitively coupling the state of a nearby pin for example.

Pullup Resistors

Often it is useful to steer an input pin to a known state if no input is present. This can be done by adding a pullup resistor(to
+5V), or pulldown resistor (resistor to ground) on the input, with 10K being a common value.

There are also convenient 20K pullup resistors built into the Atmega chip that can be accessed from software. These built-in
pullup resistors are accessed in the following manner.

pi nMbde(pi n, | NPUT); /1 set pin to input
digital Wite(pin, HGH; /1 turn on pullup resistors

Note that the pullup resistors provide enough current to dimly light an LED connected to a pin that has been configured as
an input. If LED's in a project seem to be working, but very dimly, this is likely what is going on, and the programmer has
forgotten to use pinMode() to set the pins to outputs.

Note also that the pullup resistors are controlled by the same registers (internal chip memory locations) that control whether
a pin is HIGH or LOW. Consequently a pin that is configured to have pullup resistors turned on when the pin is an INPUT, will
have the pin configured as HIGH if the pin is then swtiched to an OUTPUT with pinMode(). This works in the other direction
as well, and an output pin that is left in a HIGH state will have the pullup resistors set if switched to an input with
pinMode().

Pins Configured as OUTPUT

Pins configured as OUTPUT with pinMode() are said to be in a low-impedance state. This means that they can provide a
substantial amount of current to other circuits. Atmega pins can source (provide positive current) or sink (provide negative
current) up to 40 mA (milliamps) of current to other devices/circuits. This is enough current to brightly light up an LED (don't
forget the series resistor), or run many sensors, for example, but not enough current to run most relays, solenoids, or
motors.

Short circuits on Arduino pins, or attempting to run high current devices from them, can damage or destroy the output
transistors in the pin, or damage the entire Atmega chip. Often this will result in a "dead" pin in the microcontroller but the
remaining chip will still function adequately. For this reason it is a good idea to connect OUTPUT pins to other devices with
4700 or 1k resistors, unless maximum current draw from the pins is required for a particular application.

Foundations

http://www.arduino.cc/
http://www.arduino.cc/en/Main/Buy
http://www.arduino.cc/en/Main/Software
http://www.arduino.cc/en/Guide/HomePage
http://www.arduino.cc/en/Reference/HomePage
http://www.arduino.cc/en/Main/Hardware
http://www.arduino.cc/en/Main/FAQ
http://www.arduino.cc/blog/
http://www.arduino.cc/cgi-bin/yabb2/YaBB.pl
http://www.arduino.cc/playground/
http://www.arduino.cc/en/Hacking/HomePage
http://www.arduino.cc/en/Tutorial/DigitalPins?action=edit
http://www.arduino.cc/en/Tutorial/DigitalPins?action=diff
http://www.arduino.cc/en/Tutorial/DigitalPins?action=print
http://www.arduino.cc/en/Site/AllRecentChanges

Arduino

Buy | Download | Getting Started | Learning | Reference | Hardware | FAQ Blog » | Forum » | Playground »

Learning Examples | Foundations | Hacking | Links

Analog Pins

A description of the analog input pins on an Atmegal68 (Arduino chip).
A/D converter

The Atmegal68 contains an onboard 6 channel analog-to-digital (A/D) converter. The converter has 10 bit resolution,
returning integers from O to 1023. While the main function of the analog pins for most Arduino users is to read analog
sensors, the analog pins also have all the functionality of general purpose input/output (GPIO) pins (the same as digital pins O
- 13).

Consequently, if a user needs more general purpose input output pins, and all the analog pins are not in use, the analog pins
may be used for GPIO.

Pin mapping

The Arduino pin numbers corresponding to the analog pins are 14 through 19. Note that these are Arduino pin numbers, and
do not correspond to the physical pin numbers on the Atmegal68 chip. The analog pins can be used identically to the digital
pins, so for example, to set analog pin O to an output, and to set it HIGH, the code would look like this:

pi nMode(14, OUTPUT);
digital Wite(14, HGH;

Pullup resistors

The analog pins also have pullup resistors, which work identically to pullup resistors on the digital pins. They are enabled by
issuing a command such as

digitalWite(14, HHGH); // set pullup on analog pin O
while the pin is an input.

Be aware however that turning on a pullup will affect the value reported by analogRead() when using some sensors if done
inadvertently. Most users will want to use the pullup resistors only when using an analog pin in its digital mode.

Details and Caveats

The analogRead command will not work correctly if a pin has been previously set to an output, so if this is the case, set it
back to an input before using analogRead. Similarly if the pin has been set to HIGH as an output.

The Atmegal68 datasheet also cautions against switching digital pins in close temporal proximity to making A/D readings
(analogRead) on other analog pins. This can cause electrical noise and introduce jitter in the analog system. It may be
desirable, after manipulating analog pins (in digital mode), to add a short delay before using analogRead() to read other
analog pins.

http://www.arduino.cc/
http://www.arduino.cc/en/Main/Buy
http://www.arduino.cc/en/Main/Software
http://www.arduino.cc/en/Guide/HomePage
http://www.arduino.cc/en/Reference/HomePage
http://www.arduino.cc/en/Main/Hardware
http://www.arduino.cc/en/Main/FAQ
http://www.arduino.cc/blog/
http://www.arduino.cc/cgi-bin/yabb2/YaBB.pl
http://www.arduino.cc/playground/
http://www.arduino.cc/en/Hacking/HomePage
http://www.arduino.cc/en/Tutorial/AnalogInputPins?action=edit
http://www.arduino.cc/en/Tutorial/AnalogInputPins?action=diff
http://www.arduino.cc/en/Tutorial/AnalogInputPins?action=print
http://www.arduino.cc/en/Site/AllRecentChanges

Arduino I |

Buy | Download | Getting Started | Learning | Reference | Hardware | FAQ Blog » | Forum » | Playground »

Learning Examples | Foundations | Hacking | Links

PWM

The Fading example demonstrates the use of analog output (PWM) to fade an LED. It is available in the File->Sketchbook-
>Examples->Analog menu of the Arduino software.

Pulse Width Modulation, or PWM, is a technique for getting analog results with digital means. Digital control is used to create
a square wave, a signal switched between on and off. This on-off pattern can simulate voltages in between full on (5 Volts)
and off (0 Volts) by changing the portion of the time the signal spends on versus the time that the signal spends off. The
duration of "on time" is called the pulse width. To get varying analog values, you change, or modulate, that pulse width. If
you repeat this on-off pattern fast enough with an LED for example, the result is as if the signal is a steady voltage between
0 and 5v controlling the brightness of the LED.

In the graphic below, the green lines represent a regular time period. This duration or period is the inverse of the PWM
frequency. In other words, with Arduino’'s PWM frequency at about 500Hz, the green lines would measure 2 milliseconds each.
A call to analogWrite() is on a scale of O - 255, such that analogWrite(255) requests a 100% duty cycle (always on), and
analogWrite(127) is a 50% duty cycle (on half the time) for example.

Pulse Width Modulation
0% Duty Cycle - analogWrite(0)

Sv
Ov . . .
25% Duty Cycle - analogWrite(64)
Sv
Ov
50% Duty Cycle - analogWrite(127)
Sv
Ow
75% Duty Cycle - analogWrite(191)
5.hll | | 1 1
U U U

100% Duty Cycle - analogWrite(255)
Sv

Ov

Once you get this example running, grab your arduino and shake it back and forth. What you are doing here is essentially
mapping time across the space. To our eyes, the movement blurs each LED blink into a line. As the LED fades in and out,
those little lines will grow and shrink in length. Now you are seeing the pulse width.

Written by Timothy Hirzel

Foundations

http://www.arduino.cc/
http://www.arduino.cc/en/Main/Buy
http://www.arduino.cc/en/Main/Software
http://www.arduino.cc/en/Guide/HomePage
http://www.arduino.cc/en/Reference/HomePage
http://www.arduino.cc/en/Main/Hardware
http://www.arduino.cc/en/Main/FAQ
http://www.arduino.cc/blog/
http://www.arduino.cc/cgi-bin/yabb2/YaBB.pl
http://www.arduino.cc/playground/
http://www.arduino.cc/en/Hacking/HomePage
http://www.arduino.cc/en/Reference/AnalogWrite

http://www.arduino.cc/en/Tutorial/PWM?action=edit
http://www.arduino.cc/en/Tutorial/PWM?action=diff
http://www.arduino.cc/en/Tutorial/PWM?action=print
http://www.arduino.cc/en/Site/AllRecentChanges

Arduino

Buy | Download | Getting Started | Learning | Reference | Hardware | FAQ Blog » | Forum » | Playground »

Learning Examples | Foundations | Hacking | Links

Memory
There are three pools of memory in the microcontroller used on Arduino boards (ATmegal68):

« Flash memory (program space), is where the Arduino sketch is stored.
« SRAM (static random access memory) is where the sketch creates and manipulates variables when it runs.
« EEPROM is memory space that programmers can use to store long-term information.

Flash memory and EEPROM memory are non-volatile (the information persists after the power is turned off). SRAM is volatile
and will be lost when the power is cycled.

The ATmegal68 chip has the following amounts of memory:

Flash 16k bytes (of which 2k is used for the bootl oader)
SRAM 1024 bytes
EEPROM 512 bytes

Notice that there's not much SRAM available. It's easy to use it all up by having lots of strings in your program. For example,
a declaration like:

char message[] = "l support the Cape Wind project.";

puts 32 bytes into SRAM (each character takes a byte). This might not seem like a lot, but it doesn't take long to get to
1024, especially if you have a large amount of text to send to a display, or a large lookup table, for example.

If you run out of SRAM, your program may fail in unexpected ways; it will appear to upload successfully, but not run, or run
strangely. To check if this is happening, you can try commenting out or shortening the strings or other data structures in
your sketch (without changing the code). If it then runs successfully, you're probably running out of SRAM. There are a few
things you can do to address this problem:

If your sketch talks to a program running on a (desktop/laptop) computer, you can try shifting data or calculations to
the computer, reducing the load on the Arduino.

If you have lookup tables or other large arrays, use the smallest data type necessary to store the values you need;
for example, an int takes up two bytes, while a byte uses only one (but can store a smaller range of values).

If you don't need to modify the strings or data while your sketch is running, you can store them in flash (program)
memory instead of SRAM; to do this, use the PROGMEM keyword.

To use the EEPROM, see the EEPROM library.

Foundations

http://www.arduino.cc/
http://www.arduino.cc/en/Main/Buy
http://www.arduino.cc/en/Main/Software
http://www.arduino.cc/en/Guide/HomePage
http://www.arduino.cc/en/Reference/HomePage
http://www.arduino.cc/en/Main/Hardware
http://www.arduino.cc/en/Main/FAQ
http://www.arduino.cc/blog/
http://www.arduino.cc/cgi-bin/yabb2/YaBB.pl
http://www.arduino.cc/playground/
http://www.arduino.cc/en/Hacking/HomePage
http://www.arduino.cc/en/Reference/Int
http://www.arduino.cc/en/Reference/Byte
http://www.arduino.cc/en/Reference/PROGMEM
http://www.arduino.cc/en/Reference/EEPROM
http://www.arduino.cc/en/Tutorial/Memory?action=edit
http://www.arduino.cc/en/Tutorial/Memory?action=diff
http://www.arduino.cc/en/Tutorial/Memory?action=print
http://www.arduino.cc/en/Site/AllRecentChanges

Arduino

Buy | Download | Getting Started | Learning | Reference | Hardware | FAQ Blog » | Forum » | Playground »

Learning Examples | Foundations | Hacking | Links

Bootloader

The bootloader is a small piece of software that we've burned onto the chips that come with your Arduino boards. It allows
you to upload sketches to the board without external hardware.

When you reset the Arduino board, it runs the bootloader (if present). The bootloader pulses digital pin 13 (you can connect
an LED to make sure that the bootloader is installed). The bootloader then listens for commands or data to arrive from the
the computer. Usually, this is a sketch that the bootloader writes to the flash memory on the ATmegal68 or ATmega8 chip.
Then, the bootloader launches the newly-uploaded program. If, however, no data arrives from the computer, the bootloader
launches whatever program was last uploaded onto the chip. If the chip is still "virgin" the bootloader is the only program in
memory and will start itself again.

Why are we using a bootloader?

The use of a bootloader allows us to avoid the use of external hardware programmers. (Burning the bootloader onto the chip,
however, requires one of these external programmers.)

Why doesn't my sketch start?

It's possible to "confuse" the bootloader so that it never starts your sketch. In particular, if you send serial data to the board
just after it resets (when the bootloader is running), it may think you're talking to it and never quit. In particular, the auto-
reset feature on the Diecimila means that the board resets (and the bootloader starts) whenever you open a serial connection
to it. To avoid this problem, you should wait for two seconds or so after opening the connection before sending any data. On
the NG, the board doesn't reset when you open a serial connection to it, but when it does reset it takes longer - about 8-10
seconds - to timeout.

Looking for more information?

See the bootloader development page for information on burning a bootloader and other ways to configure a chip.

http://www.arduino.cc/
http://www.arduino.cc/en/Main/Buy
http://www.arduino.cc/en/Main/Software
http://www.arduino.cc/en/Guide/HomePage
http://www.arduino.cc/en/Reference/HomePage
http://www.arduino.cc/en/Main/Hardware
http://www.arduino.cc/en/Main/FAQ
http://www.arduino.cc/blog/
http://www.arduino.cc/cgi-bin/yabb2/YaBB.pl
http://www.arduino.cc/playground/
http://www.arduino.cc/en/Hacking/HomePage
http://www.arduino.cc/en/Hacking/Bootloader
http://www.arduino.cc/en/Tutorial/Bootloader?action=edit
http://www.arduino.cc/en/Tutorial/Bootloader?action=diff
http://www.arduino.cc/en/Tutorial/Bootloader?action=print
http://www.arduino.cc/en/Site/AllRecentChanges

Arduino I |

Buy | Download | Getting Started | Learning | Reference | Hardware | FAQ Blog » | Forum » | Playground »

Learning Examples | Foundations | Hacking | Links

Variables

A variable is a place to store a piece of data. It has a name, a value, and a type. For example, this statement (called a
declaration):

int pin = 13;

creates a variable whose name is pi n, whose value is 13, and whose type is i nt . Later on in the program, you can refer to
this variable by its name, at which point its value will be looked up and used. For example, in this statement:

pi nMode(pi n, OUTPUT) ;

it is the value of pin (13) that will be passed to the pinMode() function. In this case, you don't actually need to use a
variable, this statement would work just as well:

pi nMode(13, OUTPUT);

The advantage of a variable in this case is that you only need to specify the actual number of the pin once, but you can use
it lots of times. So if you later decide to change from pin 13 to pin 12, you only need to change one spot in the code. Also,
you can use a descriptive name to make the significance of the variable clear (e.g. a program controlling an RGB LED might
have variables called redPin, greenPin, and bluePin).

A variable has other advantages over a value like a number. Most importantly, you can change the value of a variable using
an assignment (indicated by an equals sign). For example:

pin = 12;

will change the value of the variable to 12. Notice that we don't specify the type of the variable: it's not changed by the
assignment. That is, the name of the variable is permanently associated with a type; only its value changes. [1] Note that
you have to declare a variable before you can assign a value to it. If you include the preceding statement in a program
without the first statement above, you'll get a message like: “error: pin was not declared in this scope™.

When you assign one variable to another, you're making a copy of its value and storing that copy in the location in memory
associated with the other variable. Changing one has no effect on the other. For example, after:

int pin = 13;
int pin2 = pin;
pin = 12;

only pin has the value 12; pin2 is still 13.

Now what, you might be wondering, did the word "scope" in that error message above mean? It refers to the part of your
program in which the variable can be used. This is determined by where you declare it. For example, if you want to be able
to use a variable anywhere in your program, you can declare at the top of your code. This is called a global variable; here's
an example:

int pin = 13;

void setup()

{
pi nMode(pi n, OUTPUT) ;
}
voi d | oop()
{

digitalWite(pin, HGH;

http://www.arduino.cc/
http://www.arduino.cc/en/Main/Buy
http://www.arduino.cc/en/Main/Software
http://www.arduino.cc/en/Guide/HomePage
http://www.arduino.cc/en/Reference/HomePage
http://www.arduino.cc/en/Main/Hardware
http://www.arduino.cc/en/Main/FAQ
http://www.arduino.cc/blog/
http://www.arduino.cc/cgi-bin/yabb2/YaBB.pl
http://www.arduino.cc/playground/
http://www.arduino.cc/en/Hacking/HomePage

As you can see, pin is used in both the setup() and loop() functions. Both functions are referring to the same variable, so
that changing it one will affect the value it has in the other, as in:

int pin = 13;

voi d setup()

{
pin = 12;
pi nMbde(pi n, OUTPUT);
}
void | oop()
{
digital Wite(pin, HGH;
}

Here, the digitalWrite() function called from loop() will be passed a value of 12, since that's the value that was assigned to
the variable in the setup() function.

If you only need to use a variable in a single function, you can declare it there, in which case its scope will be limited to that
function. For example:

void setup()
{
int pin = 13;
pi nMbde(pi n, OUTPUT);
digital Wite(pin, HGH;
}

In this case, the variable pin can only be used inside the setup() function. If you try to do something like this:

void | oop()
{

digitalWite(pin, LON; // wong: pin is not in scope here.
}

you'll get the same message as before: "error: 'pin' was not declared in this scope”. That is, even though you've declared pin
somewhere in your program, you're trying to use it somewhere outside its scope.

Why, you might be wondering, wouldn't you make all your variables global? After all, if 1 don't know where | might need a
variable, why should I limit its scope to just one function? The answer is that it can make it easier to figure out what
happens to it. If a variable is global, its value could be changed anywhere in the code, meaning that you need to understand
the whole program to know what will happen to the variable. For example, if your variable has a value you didn't expect, it
can be much easier to figure out where the value came from if the variable has a limited scope.

[block scope] [size of variables]

[1] In some languages, like Python, types are associated with values, not variable names, and you can assign values of any
type to a variable. This is referred to as dynamic typing.

http://www.arduino.cc/en/Tutorial/Variables?action=edit
http://www.arduino.cc/en/Tutorial/Variables?action=diff
http://www.arduino.cc/en/Tutorial/Variables?action=print
http://www.arduino.cc/en/Site/AllRecentChanges

Arduino

Buy | Download | Getting Started | Learning | Reference | Hardware | FAQ Blog » | Forum » | Playground »

Login to Arduino

Keep me logged in: [T

o]

http://www.arduino.cc/
http://www.arduino.cc/en/